Preview

Obstetrics, Gynecology and Reproduction

Advanced search

The role of steroidogenesis disorders in developing congenital clitoromegaly

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.494

Abstract

Clitoromegaly is characterized by enlarged clitoris exceeding normal size typical to healthy women that represents a pressing issue in gynecological endocrinology. It emerges as an idiopathic condition or is formed along with impaired synthesis of sex steroids, accompanied by androgen excess. However, idiopathic clitoromegaly is a rather common diagnosis, since the objective cause of this symptom often remains unidentified. Investigating an alternative pathway for the synthesis of androgens and 11-oxysetroids in women with clitoromegaly is of great interest to practicing endocrinologists and gynecologists due to new opportunities for diagnosing and preventing this condition. This literature review is aimed at assessing current insights into disorders of female androgen steroidogenesis and its role in clitoromegaly pathogenesis.

About the Authors

N. V. Ivanov
Mechnikov North-Western State Medical University, Health Ministry of Russian Federation
Russian Federation

Nikita V. Ivanov, MD, PhD

Scopus Author ID: 57221190481. WoS ResearcherID: JRZ-0207-2023



I. P. Serebryakova
Mechnikov North-Western State Medical University, Health Ministry of Russian Federation
Russian Federation

Inna P. Serebryakova, MD, PhD

41 Kirochnaya Str., Saint Petersburg 191015

Scopus Author ID: 58679099300. WoS ResearcherID: JRZ-0285-2023



L. I. Radugina
Mechnikov North-Western State Medical University, Health Ministry of Russian Federation
Russian Federation

Lyubov I. Radugina

41 Kirochnaya Str., Saint Petersburg 191015



F. M. Radugin
Saint Luke's Clinical Hospital
Russian Federation

Fyodor M. Radugin, MD

46 Chugunnaya Str., Saint Petersburg 194044



Sh. K. Yusupova
Andijan State Medical Institute
Uzbekistan

Shakhnoza K. Yusupova, MD, Dr Sci Med

1 Yu. Otabekova Str., Andijan 170127



References

1. Ivanov N.V., Serebryakova I.P., Khudyakova N.V., Fedorova A.I. Clitoromegaly: principles of diagnostics and treatment. [Klitoromegaliya: principy diagnostiki i lecheniya]. Obstetrics, Gynecology and Reproduction. 2023;17(4):462–475. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.400.

2. Andronik D.I., Bashnina E.B., Burtsev E.A. et al. Lilith principle. On the issue of sex formation in humans: a practical guide for doctors. Eds. N.V. Ivanov, E.B. Bashnina. [K voprosu formirovaniya pola u cheloveka: prakticheskoe rukovodstvo dlya vrachej. Pod red. N.V. Ivanova, E.B. Bashninoj]. Saint Petersburg: POLITEH-PRESS, 2021. 382 p. (In Russ.).

3. Speiser P.W., Arlt W., Auchus R.J. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2018;103(11):4043–88. https://doi.org/10.1210/jc.2018-01865.

4. Penning T.M., Burczynski M.E., Jez J.M. et al. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J. 2000;351(Pt1):67–77. https://doi.org/10.1042/0264-6021:3510067.

5. Nakamura Y., Hornsby P.J., Casson P. et al. Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J Clin Endocrinol Metab. 2009;94(6):2192–8. https://doi.org/10.1210/jc.2008-2374.

6. Claahsen-van der Grinten H.L., Speiser P.W., Ahmed S.F. Congenital adrenal hyperplasia – current insights in pathophysiology, diagnostics, and management. Endocr Rev. 2022;43(1):91–159. https://doi.org/10.1210/endrev/bnab016.

7. Serebryakova I.P., Velikanova L.I., Vorokhobina N.V. et al. The specific features of adrenal steroidogenesis in patients with congenital adrenal cortical dysfunction due to 21-hydroxylase deficiency. [Osobennosti adrenalovogo steroidogeneza u bol'nyh s vrozhdennoj disfunkciej kory nadpochechnikov vsledstvie defekta 21-gidroksilazy]. Problemy endokrinologii. 2005;51(4):22–6. (In Russ.). https://doi.org/10.14341/probl200551422-26.

8. Schiffer L., Barnard L., Baranowski E.S. et al. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol. 2019;194:105439. https://doi.org/10.1016/j.jsbmb.2019.105439.

9. Storbeck K.H., Schiffer L., Baranowski E.S. et al. Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism. Endocr Rev. 2019;40(6):1605–25. https://doi.org/10.1210/er.2018-00262.

10. Miller W.L., Auchus R.J. The "backdoor pathway" of androgen synthesis in human male sexual development. PLoS Biol. 2019;17(4):e3000198. https://doi.org/10.1371/journal.pbio.3000198.

11. Fukami M., Horikawa R., Nagai T. et al. Cytochrome P450 oxidoreductase gene mutations and Antley-Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab. 2005;90(1):414–26. https://doi.org/10.1210/jc.2004-0810.

12. Fukami M., Ogata T. Cytochrome P450 oxidoreductase deficiency: rare congenital disorder leading to skeletal malformations and steroidogenic defects. Pediatr Int. 2014;56(6):805–8. https://doi.org/10.1111/ped.12518.

13. Reisch N., Idkowiak J., Hughes B.A. et al. Prenatal diagnosis of congenital adrenal hyperplasia caused by P450 oxidoreductase deficiency. J Clin Endocrinol Metab. 2013;98(3):E528–36. https://doi.org/10.1210/jc.2012-3449.

14. Reisch N., Auchus R.J., Shackleton C.H.L. et al. Reply to Fluck et al.: Alternative androgen pathway biosynthesis drives fetal female virilization in P450 oxidoreductase deficiency. Proc Natl Acad Sci U S A. 2020;117(26):14634–5. https://doi.org/10.1073/pnas.2007695117.

15. Gent R., Van Rooyen D., Atkin S.L., Swart A.C. C11-hydroxy and C11-oxo C19 and C21 steroids: pre-receptor regulation and interaction with androgen and progesterone steroid receptors. Int J Mol Sci. 2023;25(1):101. https://doi.org/10.3390/ijms25010101.

16. Turcu A.F., Rege J., Auchus R.J. et al. 11-Oxygenated androgens in health and disease. Nat Rev Endocrinol. 2020;16(5):284–96. https://doi.org/10.1038/s41574-020-0336-x.

17. Fukami M. 11-Oxyandrogens from the viewpoint of pediatric endocrinology. Clin Pediatr Endocrinol. 2022;31(3):110–5. https://doi.org/10.1297/cpe.2022-0029.

18. Rosenfield R.L. Normal and premature adrenarche. Endocr Rev. 2021;42(6):783–814. https://doi.org/10.1210/endrev/bnab009.

19. Lo J.C., Grumbach M.M. Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol Metab Clin North Am. 2001;30(1):207–29. https://doi.org/10.1016/s0889-8529(08)70027-6.

20. Belgorosky A., Guercio G., Pepe C. et al. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm Res. 2009;72(6):321–30. https://doi.org/10.1159/000249159.

21. White P.C. Ontogeny of adrenal steroid biosynthesis: why girls will be girls. J Clin Invest. 2006;116(4):872–4. https://doi.org/10.1172/JCI28296.

22. Karahoda R., Kallol S., Groessl M. Revisiting steroidogenic pathways in the human placenta and primary human trophoblast cells. Int J Mol Sci. 2021;22(4):1704. https://doi.org/10.3390/ijms22041704.

23. Noyola-Martínez N., Halhali A., Barrera D. Steroid hormones and pregnancy. Gynecol Endocrinol. 2019;35(5):376–84. https://doi.org/10.1080/09513590.2018.1564742.

24. Sharpe R.M. Androgens and the masculinization programming window: human-rodent differences. Biochem Soc Trans. 2020;48(4):1725–35. https://doi.org/10.1042/BST20200200.

25. New M.I., Tong Y.K., Yuen T. et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–30. https://doi.org/10.1210/jc.2014-1118.

26. Khattab A., Yuen T., Sun L. et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia. Endocr Dev. 2016;30:37–41. https://doi.org/10.1159/000439326.


What is already known about this subject?

► Clitoromegaly is a common symptom in endocrinological diseases: from nosologies related to disorders of sex formation to virilizing forms of adrenocortical cancer and polycystic ovary syndrome. However, the mechanisms underlying clitoromegaly development are often understudied.

What are the new findings?

► The mechanisms resulting in hyperandrogenism and development of clitoromegaly in patients associated with classical forms of congenital adrenal cortex dysfunction are discussed.

► The role of disturbed androgen synthesis in the adrenal glands and placenta in emerging hyperandrogenism in individuals with karyotype 46,XX is elucidated within the framework of understanding a role of alternative androgen steroidogenesis and mechanisms for 11-oxygenated steroid hyperproduction.

► A role of aromatase in mother's placenta for developing clitoromegaly is analyzed.

How might it impact on clinical practice in the foreseeable future?

► This review suggests expanding diagnostic approaches in management of patients with clitoromegaly to develop effective methods for its prevention and treatment.

Review

For citations:


Ivanov N.V., Serebryakova I.P., Radugina L.I., Radugin F.M., Yusupova Sh.K. The role of steroidogenesis disorders in developing congenital clitoromegaly. Obstetrics, Gynecology and Reproduction. 2024;18(5):679–692. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.494

Views: 1168


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)