Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Assessing blood vascular endothelial growth factor level in patients with vulvovaginal atrophy

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.684

Abstract

Introduction. Angiogenesis is essential for growth and development of blood vessels in normal tissues, during wound healing, and a crucial factor in tumor progression. One of the main stimulators of angiogenesis is vascular endothelial growth factor (VEGF) that promotes active endothelial cell proliferation and migration. In malignant tumors, VEGF supports the development of tumor vessels, which may correlate with cancer prognosis and diagnosis.

Aim: to assess blood VEGF level in patients with vulvovaginal atrophy (VVA) and hormone-dependent malignant tumors of the female reproductive system (breast, cervical, ovarian, and endometrial cancers), in women with VVA and hormone-dependent benign tumors of the female reproductive system and healthy women.

Materials and Methods. A cross-sectional study assessed 68 diagnosed cases of VVA and cancer of the female reproductive organs (group 1) – with breast cancer (BC), cervical cancer (CC), endometrial cancer (EC), ovarian cancer (OC); 53 women with VVA and benign diseases of the female genital organs (group 2) and 80 healthy perimenopausal women without gynecological pathology (control group). Adenocarcinoma, stage 1A was verified as a histopathological type of malignant neoplasms. Plasma VEGF concentrations were quantitated using an enzyme-linked immunosorbent assay (ELISA). Blood samples were obtained by puncturing a peripheral vein before surgery. Statistical data processing was performed using the StatTech v. 4.8.5 program (StatTech LLC, Russia).

Results. The median plasma VEGF level in 80 healthy women (control group) comprised 190 (range 40.00–661.50) pg/ml, in group 1 – 452.0 (range 69.98–2808.44) pg/ml and in group 2 – 323.0 (range 95.7–1100.0) pg/ml. The median VEGF level and interquartile range in 30 patients with BBA and ВС, 10 patients with BBA and CC, 10 patients with BBA and EС, and 9 patients with BBA and ОС was 632.0 [360.0–1110.5] pg/ml, 228.0 [209.5–238.5] pg/ml, 448.0 [422.0–499.5] pg/ml and 503.0 [211.0–1337.0] pg/ml, respectively. VEGF concentrations in patients with VVA and BC, OC and EC were significantly higher than in healthy women (Mann-Whitney U-test, p = 0.001, p = 0.021 and p < 0.0001, respectively). However, in patients with BBA and CC, VEGF levels did not significantly differ from those in healthy women. The median plasma VEGF level in patients with BBA and benign diseases of the female genital organs vs. control group was significantly elevated reaching 323.0 (range 95.7–1100.0) pg/ml, which demonstrates statistically significant differences compared with the control group (p = 0.007).

Conclusion. Significant differences were found between VEGF level in women with BBA and malignant neoplasms of the reproductive system and in women with BBA and benign neoplasms of the female genital organs compared with control group (healthy women). The obtained results indicate a crucial role for VEGF in angiogenesis processes associated with malignant diseases. Increased VEGF expression in women with VVA compared to healthy women may be related to impaired vascularization and tissue regeneration in the vagina and vulva further exacerbated by malignant processes.

About the Authors

O. S. Gridasova
Clinic "Real Trans Hair"
Russian Federation

Olga S. Gridasova - MD.

6 3-ya Rozhinskaya Str., Moscow 115191



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva - Dr Sci Med, Prof. Scopus Author ID: 57194547147. WoS ResearcherID: F-8384-2017.

8 bldg. 2, Trubetskaya Str., Moscow 119048



A. G. Solopova
Sechenov University
Russian Federation

Antonina G. Solopova - MD, Dr Sci Med, Prof. Scopus Author ID: 6505479504. WoS ResearcherID: Q-1385-2015.

8 bldg. 2, Trubetskaya Str., Moscow 119048



A. E. Ivanov
Yudin City Clinical Hospital, Moscow Healthcare Department
Russian Federation

Alexander E. Ivanov - MD, PhD.

18A bldg. 7, Zagorodnoe Shosse, Moscow 117152



D. V. Blinov
Institute for Preventive and Social Medicine; Moscow Haass Medical – Social Institute; Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology, Federal Medical-Biological Agency
Russian Federation

Dmitry V. Blinov - MD, Dr Sci Med, MBA. Scopus Author ID: 6701744871. WoS ResearcherID: E-8906-2017.

11–13/1 Lyalin Pereulok, Moscow 101000; 5 bldg. 1–1a, 2-ya Brestskaya Str., Moscow 123056; 6 bldg. 1, Rodnikovaya Str., Village Goluboe, Moscow region 141551



A. Yu. Tatarintseva
Sechenov University
Russian Federation

Alena Yu. Tatarintseva

8 bldg. 2, Trubetskaya Str., Moscow 119048



References

1. van Hinsbergh V.W., Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12. https://doi.org/10.1093/cvr/cvm102.

2. Papetti M., Herman I.M. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70. https://doi.org/10.1152/ajpcell.00389.2001.

3. Abulafia O., Triest W.E., Sherer D.M. Angiogenesis in malignancies of the female genital tract. Gynecol Oncol. 1999;72(2):220–31. https://doi.org/10.1006/gyno.1998.5152.

4. Rakhimbaeva G.S., Sobirova D.S. Сlinical and neuroimmunological correlations in post-stroke epilepsy illustrated by analyzing serum neuron-specific enolase and vascular endothelial growth factor. [Kliniko-nejroimmunologicheskie korrelyacii pri postinsul'tnoj epilepsii na primere nejronspecificheskoj enolazy i faktora rosta endoteliya sosudov]. Epilepsiya i paroksizmal'nye sostoyaniya. 2024;16(4):316–26. (In Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2024.205.

5. Zhang X., Nie D., Chakrabarty S. Growth factors in tumor microenvironment. Front Biosci. 2010;15(1):151–65. https://doi.org/10.2741/3612.

6. Kut C., Mac Gabhann F., Popel A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer. 2007;97(7):978–85. https://doi.org/10.1038/sj.bjc.6603923.

7. Charnock-Jones D.S., Sharkey A.M., Rajput-Williams J. et al. Identification and localization of alternately spliced mRNAs for vascular endothelial growth factor in human uterus and estrogen regulation in endometrial carcinoma cell lines. Biol Reprod. 1993;48(5):1120–8. https://doi.org/10.1095/biolreprod48.5.1120.

8. Dobrzycka B., Mackowiak-Matejczyk B., Kinalski M., Terlikowski S.J. Pretreatment serum levels of bFGF and VEGF and its clinical significance in endometrial carcinoma. Gynecol Oncol. 2013;128(3):454–60. https://doi.org/10.1016/j.ygyno.2012.11.035.

9. Tal R., Segars J.H. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20(2):194–216. https://doi.org/10.1093/humupd/dmt042.

10. Vodolazkaia A., Yesilyurt B.T., Kyama C.M. et al. Vascular endothelial growth factor pathway in endometriosis: genetic variants and plasma biomarkers. Fertil Steril. 2016;105(4):988–96. https://doi.org/10.1016/j.fertnstert.2015.12.016.

11. Hyder S.M., Huang J.C., Nawaz Z. et al. Regulation of vascular endothelial growth factor expression by estrogens and progestins. Environ Health Perspect. 2000;108 Suppl 5:785–90. https://doi.org/10.1289/ehp.00108s5785.

12. Eatock M.M., Schätzlein A., Kaye S.B. Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev. 2000;26(3):191–204. https://doi.org/10.1053/ctrv.1999.0158.

13. Lappano R., Todd L.A., Stanic M. et al. Multifaceted interplay between hormones, growth factors and hypoxia in the tumor microenvironment. Cancers (Basel). 2022;14(3):539. https://doi.org/10.3390/cancers14030539.

14. Heits F., Wiedemann G.J., Jelkmann W. Vascular endothelial growth factor VEGF stimulates angiogenesis in good and bad situations. Dtsch Med Wochenschr. 1998;123(9):259–65. (In German). https://doi.org/10.1055/s-2007-1023947.

15. Bitsadze V.О., Slukhanchuk Е.V., Solopova А.G. et al. The role of the microenvironment in tumor growth and spreading. [Rol' mikrookruzheniya v roste i rasprostranenii opuholi]. Obstetrics, Gynecology and Reproduction. 2024;18(1):96–111. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.489.

16. Kang Y., Li H., Liu Y., Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol. 2024;150(5):221. https://doi.org/10.1007/s00432-024-05714-5.

17. Trifanescu O.G., Gales L.N., Tanase B.C. et al. Prognostic role of vascular endothelial growth factor and correlation with oxidative stress markers in locally advanced and metastatic ovarian cancer patients. Diagnostics (Basel). 2023;13(1):166. https://doi.org/10.3390/diagnostics13010166.

18. Obermair A., Tempfer C., Hefler L. et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer. Br J Cancer. 1998;77(11):1870–4. https://doi.org/10.1038/bjc.1998.311.

19. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25. https://doi.org/10.1210/edrv.18.1.0287.

20. Lee C., Kim M.J., Kumar A. et al. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther. 2025;10(1):170. https://doi.org/10.1038/s41392-025-02249-0.

21. Dzhalilova D.Sh., Makarova O.V. HIF-dependent mechanisms of relationship of hypoxia tolerance and tumor development (review). [HIF-oposredovannye mekhanizmy vzaimosvyazi ustojchivosti k gipoksii i opuholevogo rosta (obzor)]. Biohimiya. 2021;86(10): 1403–22. (In Russ.). https://doi.org/10.1134/S0006297921100011.

22. Kraft A., Weindel K., Ochs A. et al. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer. 1999;85(1):178–87.

23. Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83–92. https://doi.org/10.2147/HP.S93413.

24. Mao C.L., Seow K.M., Chen K.H. The utilization of bevacizumab in patients with advanced ovarian cancer: a systematic review of the mechanisms and effects. Int J Mol Sci. 2022;23(13):6911. https://doi.org/10.3390/ijms23136911.

25. Salgado R., Benoy I., Bogers J. et al. Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis. 2001;4(1):37–43. https://doi.org/10.1023/a:1016611230747.

26. Scapini P., Calzetti F., Cassatella M.A. On the detection of neutrophil-derived vascular endothelial growth factor (VEGF). J Immunol Methods. 1999;232(1–2):121–9. https://doi.org/10.1016/s0022-1759(99)00170-2.

27. Angelo L.S., Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res. 2007;13(10):2825–30. https://doi.org/10.1158/1078-0432.CCR-06-2416.

28. Tashkina E.A., Leplina O.Yu., Batorov E.V. et al. Expression of vascular endothelial growth factor-1 receptors (VEGFR-1) and their role in the regulation of T-lymphocyte proliferation. [Ekspressiya receptorov k sosudisto-endotelial'nomu faktoru rosta-1 (VEGFR-1) i ih rol' v regulyacii proliferacii T-limfocitov]. Rossijskij immunologicheskij zhurnal. 2019;22(2–2):942–4. (In Russ.). https://doi.org/10.31857/S102872210006534-2.

29. Gorenjak V., Vance D.R., Petrelis A.M. et al. Peripheral blood mononuclear cells extracts VEGF protein levels and VEGF mRNA: Associations with inflammatory molecules in a healthy population. PLoS One. 2019;14(8):e0220902. https://doi.org/10.1371/journal.pone.0220902.

30. Losordo D.W., Isner J.M. Estrogen and angiogenesis: A review. Arterioscler Thromb Vasc Biol. 2001;21(1):6–12. https://doi.org/10.1161/01.atv.21.1.6.

31. Monteiro R., Teixeira D., Calhau C. Estrogen signaling in metabolic inflammation. Mediators Inflamm. 2014;2014:615917. https://doi.org/10.1155/2014/615917.

32. Gridasova O.S. Role of personal hygiene in managing patients with vulvovaginal atrophy. [Rol' lichnoj gigieny v vedenii pacientok s vul'vovaginal'noj atrofiej]. Journal of Medical Rehabilitation. 2025;3(1):22–8. (In Russ.). https://doi.org/10.17749/2949-5873/rehabil.2025.29.

33. Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. The concept of thromboinflammation underlying thrombotic complications, tumor progression and metastasis in gynecological cancer patients. [Koncepciya trombovospaleniya kak osnovy tromboticheskih oslozhnenij, progressii opuholi i metastazirovaniya u onkoginekologicheskih bol'nyh]. Obstetrics, Gynecology and Reproduction. 2024;18(4):450–63. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.542.


Review

For citations:


Gridasova O.S., Khizroeva J.Kh., Solopova A.G., Ivanov A.E., Blinov D.V., Tatarintseva A.Yu. Assessing blood vascular endothelial growth factor level in patients with vulvovaginal atrophy. Obstetrics, Gynecology and Reproduction. 2025;19(5):727-736. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.684

Views: 17


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)