The importance of iron deficiency and folic acid deficiency prevention upon pregnancy planning
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.672
Abstract
Information published over the last decade on using iron supplements has been collected and systematized. The need for long-term iron supplementation and patient compliance has been updated and emphasized. The main requirements for current iron supplements today have been formulated, and the advantages of combining organic iron salts with folic acid as the most optimal and contemporary approach to the prevention and treatment of iron deficiency during pregnancy have been emphasized.
Keywords
About the Authors
V. S. KuvaevRussian Federation
Vadim S. Kuvaev - MD, PhD.
17 bldg. 1, Dolgorukovskaya Str., Moscow 127006
V. V. Kazenashev
Russian Federation
Victor V. Kazenashev - MD, PhD.
4 Dolgorukovskaya Str., Moscow 127006
O. S. Derevyanko
Russian Federation
Olga S. Derevyanko - MD, PhD.
15A Michurinsky Prospekt, 119192 Moscow
A. L. Tikhomirov
Russian Federation
Alexander L. Tikhomirov - MD, Dr Sci Med, Prof.
4 Dolgorukovskaya Str., Moscow 127006
L. R. Garaeva
Russian Federation
Lilia R. Garaeva - MD, PhD.
1 Frunze Str., Zhukovsky, Moscow Region 140180
N. L. Davydenko
Russian Federation
Natalya L. Davydenko - MD.
84 Volokolamskoe Shosse, Moscow 125367
M. V. Maminova
Russian Federation
Maria V. Maminova.
4 Dolgorukovskaya Str., Moscow 127006
K. V. Lyapina
Russian Federation
Kristina V. Lyapina - MD.
1 Frunze Str., Zhukovsky, Moscow Region 140180
N. V. Rurua
Russian Federation
Nana V. Rurua - MD.
84 Volokolamskoe Shosse, Moscow 125367
References
1. Gopal M., Sunitha K., Arockiasamy J. et al. Micronutrient deficiency in pregnancy: time to think beyond iron and folic acid supplementation. Indian J Community Med. 2022;47(3):425–8. https://doi.org/10.4103/ijcm.ijcm_743_21.
2. Global nutrition targets 2025: low birth weight policy brief. Geneva: World Health Organization, 2012. Available at: https://www.who.int/nutrition/topics/globaltargets_lowbirthweight_policybrief.pdf. [Accessed: 26.06.2025].
3. Choi R., Sun J., Yoo H. et al. A prospective study of serum trace elements in healthy korean pregnant women. Nutrients. 2016;8(11):749. https://doi.org/10.3390/nu8110749.
4. Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy. Biomolecules. 2020;10(8):1176. https://doi.org/10.3390/biom10081176.
5. McCann S., Perapoch Amadó M., Moore S.E. The role of iron in brain development: a systematic review. Nutrients. 2020;12(7):2001. https://doi.org/10.3390/nu12072001.
6. Anemia. World Health Organization, 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/anaemia. [Accessed: 26.06.2025].
7. Pasricha S.R., Tye-Din J., Muckenthaler M.U., Swinkels D.W. Iron deficiency. Lancet. 2021;397(10270):233–48. https://doi.org/10.1016/S0140-6736(20)32594-0.
8. Safiri S., Kolahi A.A., Noori M. et al. Burden of anemia and its underlying causes in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019. J Hematol Oncol. 2021;14(1):185. https://doi.org/10.1186/s13045-021-01202-2.
9. Gοugοutsi V., Pouliakis A., Argyrios T. et al. The critical role of the early evaluation of iron and bitamin B12 deficiency in pregnancy. Cureus. 2024;16(8):e67592. https://doi.org/10.7759/cureus.67592.
10. Ferrazzi E., Tiso G., Di Martino D. Folic acid versus 5-methyl tetrahydrofolate supplementation in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2020;253:312–9. https://doi.org/10.1016/j.ejogrb.2020.06.012.
11. Mikhailova O.I., Mirzabekova D.D., Kan N.E., Tyutyunnik V.L. Nutritional support in pregnancy: possibilities for the prevention of obstetric complications. [Nutritivnaya podderzhka pri beremennosti: vozmozhnost' profilaktiki akusherskih oslozhnenij]. Meditsinskiy sovet. 2021;(3):67–74. (In Russ.). https://doi.org/10.21518/2079701X-2021-3-67-74.
12. Saragih I.D., Dimog E.F., Saragih I.S., Lin C.J. Adherence to Iron and Folic Acid Supplementation (IFAS) intake among pregnant women: a systematic review meta-analysis. Midwifery. 2022;104:103185. https://doi.org/10.1016/j.midw.2021.103185.
13. Lyoba W.B., Mwakatoga J.D., Festo C. et al. Adherence to iron-folic acid supplementation and associated factors among pregnant women in Kasulu Communities in North-Western Tanzania. Int J Reprod Med. 2020;2020:3127245. https://doi.org/10.1155/2020/3127245.
14. Grudnitskaya E.N. Micronutrient support for women of reproductive age (literature review). [Mikronutrientnaya podderzhka zhenshchin reproduktivnogo vozrasta (obzor literatury)]. Reproduktivnoe zdorov'e. Vostochnaya Evropa. 2021;11(1):91–100. (In Russ.). https://doi.org/10.34883/PI.2021.11.1.023.
15. Philip K.E.J., Sadaka A.S., Polkey M. et al. The prevalence and associated mortality of non-anaemic iron deficiency in older adults: a 14 years observational cohort study. Br J Haematol. 2020;189(3):566–72. https://doi.org/10.1111/bjh.16409.
16. Kulikov I.A., Gevorkyan G.A. Discussion on the detection of latent iron deficiency and iron deficiency anemia in gynecological practice and data on treatment outcomes. [Analiz vyyavlyaemosti latentnogo deficita zheleza i zhelezodeficitnoj anemii v ginekologicheskoj praktike i dannye rezul'tatov lecheniya]. Rossijskij vestnik akushera-ginekologa. 2023;23(3):117–26. (In Russ.). https://doi.org/10.17116/rosakush202323031117.
17. Auerbach М., DeLoughery T.G. Diagnosis of iron deficiency and iron deficiency anemia in adults. Available at: https://www.uptodate.com/contents/causes-and-diagnosis-of-iron-deficiency-and-iron-deficiency-anemia-in-adults. [Accessed: 26.06.2025].
18. Dikke G.B. Vitamin and mineral complex for pregnant women: modern formula. Pharmateca. [Vitaminno-mineral'nyj kompleks dlya beremennyh: sovremennaya formula]. Farmateka. 2021;28(6)100–7. (In Russ.). https://doi.org/10.18565/pharmateca.2021.6.100-107.
19. Benson C.S., Shah A., Stanworth S.J. et al. The effect of iron deficiency and anaemia on women's health. Anaesthesia. 2021;76 Suppl 4:84–95. https://doi.org/10.1111/anae.15405.
20. Iriarte-Gahete M., Tarancon-Diez L., Garrido-Rodríguez V. et al. Absolute and functional iron deficiency: Biomarkers, impact on immune system, and therapy. Blood Rev. 2024;68:101227. https://doi.org/10.1016/j.blre.2024.101227.
21. Hilton C., Sabaratnam R., Drakesmith H., Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond). 2003:47(7):554–63. https://doi.org/10.1038/s41366-023-01299-0.
22. Volani C., Doerrier C., Demetz E. et al. Dietary iron loading negatively affects liver mitochondrial function. Metallomics. 2017;9(11):1634–44. https://doi.org/10.1039/c7mt00177k.
23. Georgieff M.K., Krebs N.F., Cusick S.E. The benefits and risks of iron supplementation in pregnancy and childhood. Annu Rev Nutr. 2019;39:121–46. https://doi.org/10.1146/annurev-nutr-082018-124213.
24. Dixon S.J., Lemberg K.M., Lamprecht M.R. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
25. Wyatt J., Fernando S.M., Powell S.G. et al. The role of iron in the pathogenesis of endometriosis: a systematic review. Hum Reprod Open. 2023(3):hoad033. https://doi.org/10.1093/hropen/hoad033.
26. Li Y., He Y., Cheng W. et al. Double-edged roles of ferroptosis in endometriosis and endometriosis-related infertility. Cell Death Discov. 2023;9(1):306. https://doi.org/10.1038/s41420-023-01606-8.
27. Tang D., Chen X., Kang R., Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25. https://doi.org/10.1038/s41422-020-00441-1.
28. Nemeth E., Ganz T. Hepcidin-ferroport in interaction controls systemic iron homeostasis. Int J Mol Sci. 2021;22(12);6493. https://doi.org/10.3390/ijms22126493.
29. Donovan A., Lima C.A., Pinkus J.L. et al. The iron exporter ferroportin/ Slc40a1 is essential for iron homeostasis. Cell Metab. 2025;1(3):191–200. https://doi.org/10.1016/j.cmet.2005.01.003.
30. Lopez A., Cocub P., Macdougall I.C., Peyrin-Biroulet L. Iron deficiency anemia. Lancet. 2015;387(10021):907–16. https://doi.org/10.1016/S0140-6736(15)60865-0.
31. Cramer W.A. Structure-function of the cytochrome b6f lipoprotein complex: a scientific odyssey and personal perspective. Photosynth Res. 2019;139(1–3):53–65. https://doi.org/10.1007/s11120-018-0585-x.
32. Zhang Y., Lu Y., Jin L. Iron metabolism and ferroptosis in physiological and pathological pregnancy. Int J Mol Sci. 2022;23(16):9395. https://doi.org/10.3390/ijms23169395.
33. Drakesmith H., Nemeth E., Ganz T. Ironing out ferroportin. Cell Metab. 2015;22(5):777–87. https://doi.org/10.1016/j.cmet.2015.09.006.
34. Nemeth E., Ganz T. Hepcidin and iron in health and disease. Annu Rev Med. 2023;74:261–77. https://doi.org/10.1146/annurev-med-043021-032816.
35. Zanella I., Paiardi G., Di Lorenzo D., Biasiotto G. Iron absorption in celiac disease and nutraceutical effect of 7-hydroxymatairesinol. Mini-review. Molecules (Basel, Switzerland). 2020;25(9):2041. https://doi.org/10.3390/molecules25092041.
36. Aschemeyer S., Qiao B., Stefanova D. et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood. 2018;131(8):899–910. https://doi.org/10.1182/blood-2017-05-786590.
37. Nemeth E., Tuttle M.S., Powelson J. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. https://doi.org/10.1126/science.1104742.
38. Billesbolle C.B., Azumaya C.M., Kretsch R.C. et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature. 2020;586(7831):807–11. https://doi.org/10.1038/s41586-020-2668-z.
39. Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9. Blood. 2023;141(6):682. https://doi.org/10.1182/blood.2022018610.
40. Haase M., Bellomo R., Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. JACC. 2010;55(19):2024–33. https://doi.org/10.1016/j.jacc.2009.12.046.
41. Auerbach М. Anemia in pregnancy. Available at: https://www.uptodate.com/contents/anemia-in-pregnancy.[Accessed: 26.06.2025].
42. Pavord S., Daru J., Prasannan N. et al.; BSH Committee. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol. 2020;188(6):819–30. https://doi.org/10.1111/bjh.16221.
43. Dewey K.G., Oaks B.M. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr. 2017;106(Suppl 6):1694S–1702S. https://doi.org/10.3945/ajcn.117.156075.
44. Chang Y.H., Chen W.H., Su C. et al. Maternal iron deficiency programs rat offspring hypertension in relation to renin-angiotensin system and oxidative stress. Int J Mol Sci. 2022;23(15):8294. https://doi.org/10.3390/ijms23158294.
45. Fisher A.L., Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr. 2017;106(Suppl 6):1567S–1574S. https://doi.org/10.3945/ajcn.117.155812.
46. Tran P.V., Kennedy B.C., Pisansky M.T. et al. Prenatal choline supplementation diminishes early-life iron deficiency-induced reprogramming of molecular networks associated with behavioral abnormalities in the adult rat hippocampus. J Nutr. 2016;146(3):484–93. https://doi.org/10.3945/jn.115.227561.
47. Cao C., Fleming M.D. Localization and kinetics of the transferrin-dependent iron transport machinery in the mouse placenta. Curr Dev Nutr. 2021;5(4):nzab025. https://doi.org/10.1093/cdn/nzab025.
48. Lakhal-Littleton S. Advances in understanding the crosstalk between mother and fetus on iron utilization. Semin Hematol. 2021;58(3):153–60. https://doi.org/10.1053/j.seminhematol.2021.06.003.
49. O'Brien K.O. Maternal, fetal and placental regulation of placental iron trafficking. Placenta. 2022;125:47–53. https://doi.org/10.1016/j.placenta.2021.12.018.
50. Best C.M., Pressman E.K., Cao C. et al. Maternal iron status during pregnancy compared with neonatal iron status better predicts placental iron transporter expression in humans. FASEB J. 2016;30(10):3541–50. https://doi.org/10.1096/fj.201600069R.
51. Delaney K.M., Cao C., Guillet R. et al. Fetal iron uptake from recent maternal diet and the maternal RBC iron pool. Am J Clin Nutr. 2022;115(4):1069–79. https://doi.org/10.1093/ajcn/nqac020.
52. Sangkhae V., Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr (Bethesda, Md.). 2017;8(1):126–36. https://doi.org/10.3945/an.116.013961.
53. Hess S.Y., Zimmermann M.B., Arnold M. et al. Iron deficiency anemia reduces thyroid peroxidase activity in rats. J Nutr. 2002;132(7):1951–5. https://doi.org/10.1093/jn/132.7.1951.
54. Szczepanek-Parulska E., Hernik A., Ruchała M. Anemia in thyroid diseases. Pol Arch Intern Med. 2017;127(5):352–60. https://doi.org/10.20452/pamw.3985.
55. Soliman A.T., De Sanctis V., Yassin M. et al. Chronic anemia and thyroid function. Acta Biomed. 2017;88(1):119–27. https://doi.org/10.23750/abm.v88i1.6048.
56. Golde D.W., Bersch N., Chopra I.J., Cline M.J. Thyroid hormones stimulate erythropoiesis in vitro. Br J Haematol. 1977;37(2):173–7. https://doi.org/10.1111/j.1365-2141.1977.tb06833.x.
57. Maggio M., De Vita F., Fisichella A. et al. The role of the multiple hormonal dysregulation in the onset of "Anemia of Aging": focus on testosterone, IGF-1, and thyroid hormones. Int J Endocrinol. 2015;2015:292574. https://doi.org/10.1155/2015/292574.
58. Zimmermann M.B., Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867–78. https://doi.org/10.1089/105072502761016494.
59. Brigham D.E., Beard J.L. Effect of thyroid hormone replacement in iron-deficient rats. Am J Physiol. 1995;269(5 Pt 2):R1140–1147. https://doi.org/10.1152/ajpregu.1995.269.5.R1140.
60. Beard J.L., Brigham D.E., Kelley S.K., Green M.H. Plasma thyroid hormone kinetics are altered in iron-deficient rats. J Nutr. 1998;128(8):1401–8. https://doi.org/10.1093/jn/128.8.1401.
61. Garofalo V., Condorelli R.A., Cannarella R. et al. Relationship between iron deficiency and thyroid function: a systematic review and meta-analysis. Nutrients. 2023;15(22):4790. https://doi.org/10.3390/nu15224790.
62. Luo J., Wang X., Yuan L., Guo L. Iron deficiency, a risk factor of thyroid disorders in reproductive-age and pregnant women: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021;12:629831. https://doi.org/10.3389/fendo.2021.629831.
63. Yan M.X., Zhao Y., Zhao D.D. et al. The association of folic acid, iron nutrition during pregnancy and congenital heart disease in Northwestern China: a matched case-control study. Nutrients. 2022;14(21):4541. https://doi.org/10.3390/nu14214541.
64. Guideline: optimal serum serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects. Geneva: World Health Organization, 2015. Available at: https://www.who.int/publications/i/item/9789241549042. [Accessed: 26.06.2025].
65. World Health Organization Model List of Essential Medicines, 20th List (April 2017). Geneva: World Health Organization, 2017. Available at: https://www.who.int/publications/i/item/eml-20. [Accessed: 26.06.2025].
66. Bailey L.B. Folate and vitamin B12 recommended intakes and status in the United States. Nutr Rev. 2004;62(6 Pt 2):S14–S20. https://doi.org/10.1111/j.1753-4887.2004.tb00065.x.
67. Johnson M.A. If high folic acid aggravates vitamin B12 deficiency what should be done about it? Nutr Rev. 2007;65(10):451–8. https://doi.org/10.1111/j.1753-4887.2007.tb00270.x.
68. WHO Guidelines Approved by the Guidelines Review Committee. WHO recommendations on antenatal care for a positive pregnancy experience. Geneva: World Health Organization, 2016. Available at: https://pubmed.ncbi.nlm.nih.gov/28079998. [Accessed: 26.06.2025].
69. Hanson M.A., Bardsley A., De-Regil L.M. et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: "Think Nutrition First". Int J Gynaecol Obstet. 2015;131 Suppl 4:S213–53. https://doi.org/10.1016/S0020-7292(15)30034-5.
70. Kennedy D., Koren G. Identifying women who might benefit from higher doses of folic acid in pregnancy. Can Fam Physician. 2012;58(4):394–7.
71. Wahyuwibowo J., Aziz A., Safitri E. et al. Iron-folate supplementation during pregnancy for prevent oxidative stress in pregnant rats: level of MDA, creatinine, glucose, erythrocite, blood pressure, body weight and number of offspring. Pharmacog J. 2020;12(1):186–91. https://doi.org/10.5530/pj.2020.12.28.
72. Shikh E.V., Makhova A.A., Eremenko N.N. et al. Rational combinations in pharmacotherapy for iron deficiency. [Racional'nye kombinacii v farmakoterapii zhelezodeficita]. Voprosy ginekologii, akusherstva i perinatologii. 2023;22(3):108–16. (In Russ.). https://doi.org/10.20953/1726-1678-2023-3-108-116.
73. Baddam S., Khan K.M., Jialal I. Folic acid deficiency. 2025 Jun 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan 25.
74. Roche M.L., Samson K.L.I., Green T.J. et al. Perspective: Weekly Iron and Folic Acid Supplementation (WIFAS): a critical review and rationale for inclusion in the essential medicines list to accelerate anemia and neural tube defects reduction. Adv Nutr. 2021;12(2):334–42. https://doi.org/10.1093/advances/nmaa169.
75. Dzhobava E.M., Knysheva I.G., Artizanova D.P. Iron deficiency during pregnancy: effectiveness of therapy and key points for clinical practice. [Deficit zheleza vo vremya beremennosti: effektivnost' terapii i klyuchevye tochki klinicheskoj praktiki]. Akusherstvo i ginekologiya. 2023;(3):109–12. (In Russ.). https://doi.org/10.18565/aig.2023.64.
76. Dzhobava E.M., Knysheva I.G., Artizanova D.P. Iron deficiency in the practice of a gynecologist: therapeutic efficacy. [Deficit zheleza v praktike vracha-ginekologa: effektivnost' terapii]. Obstetrics, Gynecology and Reproduction. 2023;17(2):202–9. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.402.
77. Lukina E.A., Ledina A.V., Rogovskaya S.I. Iron-deficiency anemia: a view of hematologist and gynecologist. Optimizing diagnostic and treatment approach. [Zhelezodeficitnaya anemiya: vzglyad gematologa i ginekologa. Optimiziruem diagnostiku i lechebnuyu taktiku]. RMZh. Mat' i ditya. 2020;3(4):248–53. (In Russ.). https://doi.org/10.32364/2618-8430-2020-3-4-248-253.
78. Stanworth S.J., Churchill D., Sweity S. et al. The impact of different doses of oral iron supplementation during pregnancy: a pilot randomized trial. Blood Adv. 2024;8(21):5683–94. https://doi.org/10.1182/bloodadvances.2024013408.
Review
For citations:
Kuvaev V.S., Kazenashev V.V., Derevyanko O.S., Tikhomirov A.L., Garaeva L.R., Davydenko N.L., Maminova M.V., Lyapina K.V., Rurua N.V. The importance of iron deficiency and folic acid deficiency prevention upon pregnancy planning. Obstetrics, Gynecology and Reproduction. 2025;19(4):561-573. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.672

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.