Внеклеточные везикулы в диагностике и прогнозировании злокачественных новообразований женской репродуктивной системы: современные данные и перспективы
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.641
Аннотация
Злокачественные новообразования женской репродуктивной системы остаются серьезной проблемой глобального здравоохранения, занимая одно из ведущих мест в структуре онкологической заболеваемости и смертности среди женщин. Несмотря на достижения в области онкогинекологии, ранняя диагностика и прогнозирование исходов заболевания по-прежнему представляют значительные трудности. В последние годы внеклеточные везикулы (ВВ), включая экзосомы, микровезикулы и апоптотические тельца, привлекли внимание исследователей как важные посредники межклеточной коммуникации и носители биологически активных молекул. ВВ транспортируют микроРНК, длинные некодирующие РНК, белки и другие молекулы, влияющие на ключевые процессы канцерогенеза, такие как пролиферация, ангиогенез, метастазирование и развитие химиорезистентности. В обзоре представлены актуальные данные о роли ВВ в патогенезе и прогрессировании рака шейки матки, эндометрия и яичников. Рассмотрены диагностические и прогностические возможности биомолекулярных компонентов ВВ, продемонстрированы результаты доклинических и клинических исследований, подчеркивающие потенциал этих биомаркеров. Обсуждаются перспективы применения ВВ в клинической практике, включая вызовы стандартизации методик и необходимость мультицентровых исследований для подтверждения их клинической ценности. Также отмечена важность интеграции омических технологий и биоинформатических подходов для более точной стратификации пациенток и персонализации терапии.
Об авторах
А. О. ЩербачеваРоссия
Щербачева Алина Олеговна
305041 Курск, ул. Карла Маркса, д. 3
Д. М. Сибирцев
Россия
Сибирцев Дмитрий Максимович
400066, Волгоград, площадь Павших Борцов, д. 1
Н. Н. Савин
Россия
Савин Никита Николаевич
117513, Москва, ул. Островитянова, д. 1
Я. В. Румянцева
Россия
Румянцева Яна Вячеславовна
344022 Ростов-на-Дону, Нахичеванский переулок, д. 29
А. Е. Бражкина
Россия
Бражкина Анастасия Евгеньевна
344022 Ростов-на-Дону, Нахичеванский переулок, д. 29
В. М. Качалова
Россия
Качалова Виктория Максимовна
394036 Воронеж, Студенческая ул., д. 10
А. В. Мамай
Россия
Мамай Алина Владимировна
295007 Симферополь, проспект Академика Вернадского, д. 4
Д. Д. Типтева
Россия
Типтева Дарья Денисовна
450008 Уфа, ул. Ленина, д. 3
Ю. В. Хитрина
Россия
Хитрина Юлия Викторовна
450008 Уфа, ул. Ленина, д. 3
Н. Г. Жуков
Россия
Жуков Никита Геннадиевич
362019 Республика Северная Осетия–Алания, Владикавказ, Пушкинская ул., д. 40
Р. А. Изотов
Россия
Изотов Родион Андреевич
191015 Санкт-Петербург, Кирочная ул., д. 41
Э. Р. Юлдашева
Россия
Юлдашева Эльвина Рафитовна
450008 Уфа, ул. Ленина, д. 3
Я. А. Анохина
Россия
Анохина Яна Андреевна
344022 Ростов-на-Дону, Нахичеванский переулок, д. 29
Список литературы
1. Жилина Н.И., Шрамко С.В. Злокачественные новообразования женских репродуктивных органов в динамике 2011–2020 на примере Новокузнецка. Социальные аспекты здоровья населения. 2022;68(3):11. https://doi.org/10.21045/2071-5021-2022-68-3-11.
2. Zhu B., Gu H., Mao Z. et al. Global burden of gynaecological cancers in 2022 and projections to 2050. J Glob Health. 2024;14:04155. https://doi.org/10.7189/jogh.14.04155.
3. Кононова Г.А., Жуйкова Л.Д., Ананина О.А. и др. Рак репродуктивной системы у женщин Республики Тыва. Эпидемиологические особенности. Сибирский онкологический журнал. 2024;23(3):5–14. https://doi.org/10.21294/1814-4861-2024-23-3-5-14.
4. Чернобровкина А.Е. Заболеваемость злокачественными новообразованиями женской половой сферы населения Санкт-Петербурга. Здоровье населения и среда обитания – ЗНиСО. 2022;1(1):29–35. https://doi.org/10.35627/2219-5238/2022-30-1-29-35.
5. Александрова Л.М., Грецова О.П., Петрова Г.В. и др. Выявление злокачественных новообразований молочной железы и органов женской репродуктивной системы при диспансеризации определенных групп взрослого населения. Профилактическая медицина. 2016;19(3):4–11. https://doi.org/10.17116/profmed20161934-11.
6. Краевая Е.Е., Силачев Д.Н., Безнощенко О.С. и др. Влияние внеклеточных везикул фолликулярной жидкости на коагуляционный гемостаз яичника. Проблемы репродукции. 2020;26(2):18–26. https://doi.org/10.17116/repro20202602118.
7. Rafieezadeh D., Rafieezadeh A. Extracellular vesicles and their therapeutic applications: a review article (part1). Int J Physiol Pathophysiol Pharmacol. 2024;16(1):1–9. https://doi.org/10.62347/QPAG5693.
8. Zeng Y., Qiu Y., Jiang W. et al. Biological features of extracellular vesicles and challenges. Front Cell Dev Biol. 2022;10:816698. https://doi.org/10.3389/fcell.2022.816698.
9. Fusco C., De Rosa G., Spatocco I. et al. Extracellular vesicles as human therapeutics: a scoping review of the literature. J Extracell Vesicles. 2024;13(5):e12433. https://doi.org/10.1002/jev2.12433.
10. Zheng M., Hou L., Ma Y. et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer. 2019;18(1):76. https://doi.org/10.1186/s12943-019-0999-x.
11. Jiang L., Huang Q., Chang J. et al. MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res. 2011;37(7):387–98. https://doi.org/10.3109/01902148.2010.492068.
12. Bi Q., Tang S., Xia L. et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One. 2012;7(6):e40169. https://doi.org/10.1371/journal.pone.0040169.
13. Lv A., Tu Z., Huang Y. et al. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett. 2021;21(1):54. https://doi.org/10.3892/ol.2020.12316.
14. Wang X., Tang S., Le S.Y. et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3(7):e2557. https://doi.org/10.1371/journal.pone.0002557.
15. Yao Q., Xu H., Zhang Q.Q. et al. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009;388(3):539–42. https://doi.org/10.1016/j.bbrc.2009.08.044.
16. Liu J., Sun H., Wang X. et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73. https://doi.org/10.3390/ijms15010758.
17. Zhang J., Liu S.C., Luo X.H. et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30(6):1116–21. https://doi.org/10.1002/jcla.21990.
18. Yang L., Bai H.-S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur Rev Med Pharmacol Sci. 2015;19(17):3187–93.
19. Kim H.J., Lee D.W., Yim G.W. et al. Long non-coding RNA HOTAIR is associated with human cervical cancer progression. Int J Oncol. 2015;46(2):521–30. https://doi.org/10.3892/ijo.2014.2758.
20. Zhang J., Yao T., Wang Y. et al. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13. https://doi.org/10.1080/15384047.2015.1108496.
21. Liang L.J., Yang Y., Wei W.F. et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression. Oncogenesis. 2021;10(3):30. https://doi.org/10.1038/s41389-021-00319-w.
22. Someya M., Hasegawa T., Tsuchiya T. et al. Predictive value of an exosomal microRNA-based signature for tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med Mol Morphol. 2023;56(1):38–45. https://doi.org/10.1007/s00795-022-00338-5.
23. Zhou C.F., Ma J., Huang L. et al. Correction to: cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2022;41(8):1231–33. https://doi.org/10.1038/s41388-021-02165-x.
24. Zhou C., Wei W., Ma J. et al. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther. 2021;29(4):1512–28. https://doi.org/10.1016/j.ymthe.2020.12.034.
25. Zhou C., Zhang Y., Yan R. et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021;28(2):715–29. https://doi.org/10.1038/s41418-020-00618-6.
26. Ding X.Z., Zhang S.Q., Deng X.L., Qiang J.H. Serum exosomal lncRNA DLX6-AS1 is a promising biomarker for prognosis prediction of cervical cancer. Technol Cancer Res Treat. 2021;20:1533033821990060. https://doi.org/10.1177/1533033821990060.
27. Guo Y., Wang X., Wang K., He Y. Appraising the value of serum and serum-derived exosomal LncRNA-EXOC7 as a promising biomarker in cervical cancer. Clin Lab. 2020;66(7). https://doi.org/10.7754/Clin.Lab.2019.191203.
28. Qiu J.J., Sun S.G., Tang X.Y. et al. Extracellular vesicular Wnt7b mediates HPV E6-induced cervical cancer angiogenesis by activating the β-catenin signaling pathway. J Exp Clin Cancer Res. 2020;39(1):260. https://doi.org/10.1186/s13046-020-01745-1.
29. Shi Y, Wang W, Yang B, Tian H. ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer. Cell Biochem Funct. 2017;35(7):477–83. https://doi.org/10.1002/cbf.3307.
30. Zhang L., Li H., Yuan M. et al. Cervical cancer cells-secreted exosomal microRNA-221-3p promotes invasion, migration and angiogenesis of microvascular endothelial cells in cervical cancer by down-regulating MAPK10 expression. Cancer Manag Res. 2019;11:10307–19. https://doi.org/10.2147/CMAR.S221527.
31. Wang W., Wu L., Tian J. et al. Cervical cancer cells-derived extracellular vesicles containing microRNA-146a-5p affect actin dynamics to promote cervical cancer metastasis by activating the Hippo-YAP signaling pathway via WWC2. J Oncol. 2022;2022:4499876. https://doi.org/10.1155/2022/4499876.
32. Yan X., Zhang S., Jia J. et al. Exosomal MiR-423-3p inhibits macrophage M2 polarization to suppress the malignant progression of cervical cancer. Pathol Res Pract. 2022;235:153882. https://doi.org/10.1016/j.prp.2022.153882.
33. Jiang L., Hong L., Yang W. et al. Co-expression network analysis of the lncRNAs and mRNAs associated with cervical cancer progression. Arch Med Sci. 2019;15(3):754–64. https://doi.org/10.5114/aoms.2019.84740.
34. Huang X., Liu X., Du B. et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer. Aging (Albany NY). 2021;13(15):19230–42. https://doi.org/10.18632/aging.202565.
35. Hu Y., Sun X., Mao C. et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 2017;6(2):471–82. https://doi.org/10.1002/cam4.994.
36. Lei L., Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther. 2020;21(8):717–25. https://doi.org/10.1080/15384047.2020.1764318.
37. Mo Y., Liang Z., Lan L. et al. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res. 2023;428(2):113621. https://doi.org/10.1016/j.yexcr.2023.113621.
38. Bhat A., Yadav J., Thakur K. et al. Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer. 2022;22(1):164. https://doi.org/10.1186/s12885-022-09262-4.
39. Acevedo-Sánchez V., Martínez-Ruiz R.S., Aguilar-Ruíz S.R. et al. Quantitative proteomics for the identification of differentially expressed proteins in the extracellular vesicles of cervical cancer cells. Viruses. 2023;15(3):702. https://doi.org/10.3390/v15030702.
40. Zhou L., Wang W., Wang F. et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol Cancer. 2021;20(1):57. https://doi.org/10.1186/s12943-021-01352-4.
41. Fan X., Cao M., Liu C. et al. Three plasma-based microRNAs as potent diagnostic biomarkers for endometrial cancer. Cancer Biomark. 2021;31(2):127–38. https://doi.org/10.3233/CBM-200972.
42. Daugaard I., Sanders K.J., Idica A. et al. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells. Oncogenesis. 2017;6(7):e366. https://doi.org/10.1038/oncsis.2017.66.
43. Hu H., Jiang L., Kang X. et al. Extracellular vesicles derived from lung cancer cells promote the progression of lung cancer by delivering miR-151a-5p. Exp Cell Res. 2023;425(1):113526. https://doi.org/10.1016/j.yexcr.2023.113526.
44. Fan X., Zou X., Liu C. et al. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci Rep. 2021;41(6):BSR20210111. https://doi.org/10.1042/BSR20210111.
45. Jing L., Hua X., Yuanna D. et al. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag Res. 2020;12:13541–52. https://doi.org/10.2147/CMAR.S283747.
46. Zhang N., Wang Y., Liu H., Shen W. Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp Cell Res. 2020;394(2):112113. https://doi.org/10.1016/j.yexcr.2020.112113.
47. Fan J.T., Zhou Z.Y., Luo Y.L. et al. Exosomal lncRNA NEAT1 from cancer-associated fibroblasts facilitates endometrial cancer progression via miR-26a/b-5p-mediated STAT3/YKL-40 signaling pathway. Neoplasia. 2021;23(7):692–703. https://doi.org/10.1016/j.neo.2021.05.004.
48. Seagle B.L., Alexander A.L., Lantsman T., Shahabi S. Prognosis and treatment of positive peritoneal cytology in early endometrial cancer: matched cohort analyses from the National Cancer Database. Am J Obstet Gynecol. 2018;218(3):329.e1–329.e15. https://doi.org/10.1016/j.ajog.2017.11.601.
49. Roman-Canal B., Moiola C.P., Gatius S. et al. EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel). 2019;11(6):839. https://doi.org/10.3390/cancers11060839.
50. Xu H., Gong Z., Shen Y. et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97. https://doi.org/10.2217/epi-2017-0109.
51. Wakabayashi I., Marumo M., Ekawa K., Daimon T. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract Lab Med. 2024;39:e00376. https://doi.org/10.1016/j.plabm.2024.e00376.
52. Cheng L., Sun X., Scicluna B.J. et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86(2):433–44. https://doi.org/10.1038/ki.2013.502.
53. Whitehouse J.S., Weigelt J.A. Diagnostic peritoneal lavage: a review of indications, technique, and interpretation. Scand J Trauma Resusc Emerg Med. 2009;17:13. https://doi.org/10.1186/1757-7241-17-13.
54. Mariscal J., Fernandez-Puente P., Calamia V. et al. Proteomic characterization of epithelial-like extracellular vesicles in advanced endometrial cancer. J Proteome Res. 2019;18(3):1043–53. https://doi.org/10.1021/acs.jproteome.8b00750.
55. Herrero C., de la Fuente A., Casas-Arozamena C. et al. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer. Cancers (Basel). 2019;11(12):2000. https://doi.org/10.3390/cancers11122000.
56. Li B.L., Lu W., Qu J.J. et al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol. 2019;234(3):2943–53. https://doi.org/10.1002/jcp.27111.
57. Srivastava A., Moxley K., Ruskin R. et al. A non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 2018;20(5):82. https://doi.org/10.1208/s12248-018-0220-y.
58. Li F., Liang A., Lv Y. et al. MicroRNA-200c inhibits epithelial-mesenchymal transition by targeting the BMI-1 gene through the phospho-AKT pathway in endometrial carcinoma cells in vitro. Med Sci Monit. 2017;23:5139–49. https://doi.org/10.12659/msm.907207.
59. Liu Y., Sánchez-Tilló E., Lu X. et al. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem. 2014;289(7):4116–25. https://doi.org/10.1074/jbc.M113.533505.
60. Song Y., Wang M., Tong H. et al. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene. 2021;40(3):633–46. https://doi.org/10.1038/s41388-020-01555-x.
61. Sommella E., Capaci V., Aloisio M. et al. A label-free proteomic approach for the identification of biomarkers in the exosome of endometrial cancer serum. Cancers (Basel). 2022;14(24):6262. https://doi.org/10.3390/cancers14246262.
62. Wang J., Gong X., Yang L. et al. Loss of exosomal miR-26a-5p contributes to endometrial cancer lymphangiogenesis and lymphatic metastasis. Clin Transl Med. 2022;12(5):e846. https://doi.org/10.1002/ctm2.846.
63. Maida Y., Takakura M., Nishiuchi T. et al. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium. Cancer Med. 2016;5(2):304–14. https://doi.org/10.1002/cam4.545.
64. Gu X., Shi Y., Dong M. еt al. Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 2021;12(9):818. https://doi.org/10.1038/s41419-021-04087-8.
65. Ding D.C., Chen W., Wang J.H., Lin S.Z. Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: a population-based cohort study in Taiwan. Medicine (Baltimore). 2018;97(39):e12608. https://doi.org/10.1097/MD.0000000000012608.
66. Che X., Jian F., Chen C. et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol. 2020;64(1):1–12. https://doi.org/10.1530/JME-19-0159.
67. Zhao M., Mishra L., Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14(2):111–23. https://doi.org/10.7150/ijbs.23230.
68. Xiao L., He Y., Peng F. et al. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res. 2020;2020:9731049. https://doi.org/10.1155/2020/9731049.
69. Peres L.C., Cushing-Haugen K.L., Köbel M. et al. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst. 2019;111(1):60–8. https://doi.org/10.1093/jnci/djy071.
70. McAlarnen L.A., Gupta P., Singh R. et al. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics. 2022;26:347–59. https://doi.org/10.1016/j.omto.2022.08.005.
71. Li L., Zhang F., Zhang J. et al. Identifying serum small extracellular vesicle microRNA as a noninvasive diagnostic and prognostic biomarker for ovarian cancer. ACS Nano. 2023;17(19):19197–210. https://doi.org/10.1021/acsnano.3c05694.
72. Wang W., Jo H., Park S. et al. Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett. 2022;542:215735. https://doi.org/10.1016/j.canlet.2022.215735.
73. Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 2016;7(13):16923–35. https://doi.org/10.18632/oncotarget.7850.
74. Kim S., Choi M.C., Jeong J.Y. et al. Serum exosomal miRNA-145 and miRNA-200c as promising biomarkers for preoperative diagnosis of ovarian carcinomas. J Cancer. 2019;10(9):1958–67. https://doi.org/10.7150/jca.30231.
75. Su Y.Y., Sun L., Guo Z.R. et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res. 2019;12(1):6. https://doi.org/10.1186/s13048-018-0477-x.
76. Pan C., Stevic I., Müller V. et al. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 2018;12(11):1935–48. https://doi.org/10.1002/1878-0261.12371.
77. Xiong J., He X., Xu Y. et al. MiR-200b is upregulated in plasma-derived exosomes and functions as an oncogene by promoting macrophage M2 polarization in ovarian cancer. J Ovarian Res. 2021;14(1):74. https://doi.org/10.1186/s13048-021-00826-9.
78. Cappellesso R., Tinazzi A., Giurici T. et al. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122(9):685–93. https://doi.org/10.1002/cncy.21442.
79. Cao J., Zhang Y., Mu J. et al. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell. 2021;34(4):1185–96. https://doi.org/10.1007/s13577-021-00522-2.
80. Mitra A., Yoshida-Court K., Solley T.N. et al. Extracellular vesicles derived from ascitic fluid enhance growth and migration of ovarian cancer cells. Sci Rep. 2021;11(1):9149. https://doi.org/10.1038/s41598-021-88163-1.
81. Zhou J., Gong G., Tan H. et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 2015;33(6):2915–23. https://doi.org/10.3892/or.2015.3937.
82. Ying X., Wu Q., Wu X. et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87. https://doi.org/10.18632/oncotarget.9246.
83. Yunusova N., Dzhugashvili E., Yalovaya A. et al. Comparative analysis of tumor-associated microRNAs and tetraspanines from exosomes of plasma and ascitic fluids of ovarian cancer patients. Int J Mol Sci. 2022;24(1):464. https://doi.org/10.3390/ijms24010464.
84. Xu Y., Xu L., Zheng J. et al. MiR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio. 2017;7(9):1258–66. https://doi.org/10.1002/2211-5463.12257.
85. Lai Y., Dong L., Jin H. et al. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging (Albany NY). 2021;13(20):23726–38. https://doi.org/10.18632/aging.203645.
86. Ma R., Ye X., Cheng H. et al. Tumor-derived exosomal circRNA051239 promotes proliferation and migration of epithelial ovarian cancer. Am J Transl Res. 2021;13(3):1125–39.
87. Yamamoto C.M., Oakes M.L., Murakami T. et al. Comparison of benign peritoneal fluid- and ovarian cancer ascites-derived extracellular vesicle RNA biomarkers. J Ovarian Res. 2018;11(1):20. https://doi.org/10.1186/s13048-018-0391-2.
88. Keserű J.S., Soltész B., Lukács J. et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015.
89. Szajnik M., Derbis M., Lach M. et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale). 2013;Suppl 4:3. https://doi.org/10.4172/2161-0932.S4-003.
90. Czystowska-Kuzmicz M., Sosnowska A., Nowis D. et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10(1):3000. https://doi.org/10.1038/s41467-019-10979-3.
91. Lai H., Guo Y., Tian L. et al. Protein panel of serum-derived small extracellular vesicles for the screening and diagnosis of epithelial ovarian cancer. Cancers (Basel). 2022;14(15):3719. https://doi.org/10.3390/cancers14153719.
92. Trinidad C.V., Pathak H.B., Cheng S. et al. Lineage specific extracellular vesicle-associated protein biomarkers for the early detection of high grade serous ovarian cancer. Sci Rep. 2023;13(1):18341. https://doi.org/10.1038/s41598-023-44050-5.
93. Yokoi A., Ukai M., Yasui T. et al. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. Sci Adv. 2023;9(27):eade6958. https://doi.org/10.1126/sciadv.ade6958.
94. Zhang P., Zhou X., He M. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3(6):438–51. https://doi.org/10.1038/s41551-019-0356-9.
95. Kong L., Xu F., Yao Y. et al. Ascites-derived CDCP1+ extracellular vesicles subcluster as a novel biomarker and therapeutic target for ovarian cancer. Front Oncol. 2023;13:1142755. https://doi.org/10.3389/fonc.2023.1142755.
96. Gupta P., Kadamberi I.P., Mittal S. et al. Tumor derived extracellular vesicles drive T cell exhaustion in tumor microenvironment through sphingosine mediated signaling and impacting immunotherapy outcomes in ovarian cancer. Adv Sci (Weinh). 2022;9(14):e2104452. https://doi.org/10.1002/advs.202104452.
97. Li N., Lin G., Zhang Y. et al. Exosome-related protein CRABP2 is upregulated in ovarian carcinoma and enhances cell proliferation. Discov Oncol. 2022;13(1):33. https://doi.org/10.1007/s12672-022-00492-3.
98. Dorayappan K.D.P, Gardner M.L., Hisey C.L. et al. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res. 2019;79(13):3503–13. https://doi.org/10.1158/0008-5472.CAN-18-3538.
99. Vaksman O., Tropé C., Davidson B., Reich R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis. 2014;35(9):2113–20. https://doi.org/10.1093/carcin/bgu130.
100. Filippov-Levy N., Cohen-Schussheim H., Tropé C.G. et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 2018;148(3):559–66. https://doi.org/10.1016/j.ygyno.2018.01.004.
101. Qiu J.J., Lin X.J., Tang X.Y. et al. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 2018;14(14):1960–73. https://doi.org/10.7150/ijbs.28048.
102. Asare-Werehene M., Hunter R.A., Gerber E. et al. The application of an extracellular vesicle-based biosensor in early diagnosis and prediction of chemoresponsiveness in ovarian cancer. Cancers (Basel). 2023;15(9):2566. https://doi.org/10.3390/cancers15092566.
103. Gerber E., Asare-Werehene M., Reunov A. et al. Predicting chemoresponsiveness in epithelial ovarian cancer patients using circulating small extracellular vesicle-derived plasma gelsolin. J Ovarian Res. 2023;16(1):14. https://doi.org/10.1186/s13048-022-01086-x.
104. Li W., Lu Y., Yu X. et al. Detection of exosomal tyrosine receptor kinase B as a potential biomarker in ovarian cancer. J Cell Biochem. 2019;120(4):6361–9. https://doi.org/10.1002/jcb.27923.
105. Yokoi A., Yoshioka Y., Hirakawa A. et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017;8(52):89811–23. https://doi.org/10.18632/oncotarget.20688.
106. Jo A., Green A., Medina J.E. et al. High-throughput profiling of extracellular vesicles for earlier ovarian cancer detection. Adv Sci (Weinh). 2023;10(27):e2301930. https://doi.org/10.1002/advs.202301930.
107. Yoshimura A., Sawada K., Nakamura K. et al. Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 2018;18(1):1065. https://doi.org/10.1186/s12885-018-4974-5.
108. Kobayashi M., Sawada K., Nakamura K. et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 2018;11(1):81. https://doi.org/10.1186/s13048-018-0458-0.
109. Au Yeung C.L., Co N.N., Tsuruga T. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150. https://doi.org/10.1038/ncomms11150.
110. Wang C., Wang J., Shen X. et al. LncRNA SPOCD1-AS from ovarian cancer extracellular vesicles remodels mesothelial cells to promote peritoneal metastasis via interacting with G3BP1. J Exp Clin Cancer Res. 2021;40(1):101. https://doi.org/10.1186/s13046-021-01899-6.
111. Cheng L., Zhang K., Qing Y. et al. Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 2020;13(1):9. https://doi.org/10.1186/s13048-020-0609-y.
112. Černe K., Kelhar N., Resnik N. et al. Characteristics of extracellular vesicles from a high-grade serous ovarian cancer cell line derived from a platinum-resistant patient as a potential tool for aiding the prediction of responses to chemotherapy. Pharmaceuticals (Basel). 2023;16(6):907. https://doi.org/10.3390/ph16060907.
113. Gao Q., Fang X., Chen Y. et al. Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res. 2021;47(1):73–87. https://doi.org/10.1111/jog.14418.
Рецензия
Для цитирования:
Щербачева А.О., Сибирцев Д.М., Савин Н.Н., Румянцева Я.В., Бражкина А.Е., Качалова В.М., Мамай А.В., Типтева Д.Д., Хитрина Ю.В., Жуков Н.Г., Изотов Р.А., Юлдашева Э.Р., Анохина Я.А. Внеклеточные везикулы в диагностике и прогнозировании злокачественных новообразований женской репродуктивной системы: современные данные и перспективы. Акушерство, Гинекология и Репродукция. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.641
For citation:
Sherbacheva A.O., Sibirtsev D.M., Savin N.N., Rumyantseva Ya.V., Brazhkina A.E., Kachalova V.M., Mamay A.V., Tipteva D.D., Khitrina Yu.V., Zhukov N.G., Izotov R.A., Yuldasheva E.R., Anokhina Ya.A. Extracellular vesicles in diagnostics and prognosis of malignant neoplasms of the female reproductive system: current data and future perspectives. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.641

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.