Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Chemotranscriptomic analysis of 7-hydroxymatairesinol-related effects on MCF7 human breast tumor cells

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.409

Abstract

Introduction. Establishing the effects of anticancer drugs on the transcriptome is an important procedure in postgenomic pharmacology necessary to comprehensively assess the desired and undesirable effects of candidate drugs.

Aim: to assess the effects of lignan 7-hydroxymatairesinol (7HMR) on breast tumor cells.

Materials and Methods. Chemotranscriptome profiling was carried out in MCF7 cells (breast cancer cell line) after 24-hour incubation with 7HMR. The GEO (Gene Expression Omnibus) database contains samples of data from transcriptomic studies allowing to model dose-dependent compound-related effects on gene expression based on the chemograph-derived combinatorial analysis algorithms. As a result, a panel of genes with altered expression is generated, which are analyzed by the functional linkage method using the international nomenclature of Gene Ontology (GO) linked to biological roles of genes/proteins.

Results. Dose-dependent effects of 7HMR on gene transcription (change in transcription by 5 % or more per 1 μmol 7HMR) were established for 3,468 out of 12,700 genes studied. 7HMR significantly reduced the expression of genes involved in maintaining cell proliferation (401 genes including those involved in telomere maintenance), protein synthesis (194 genes) and proteasomal protein degradation (70 genes), energy metabolism in tumor cells (91 genes) and chronic inflammation (148 genes). A decline in the expression of such gene groups retards the processes of proliferation and vital activity along with protecting host body from excessive inflammation. 7HMR contributed to a predominant increase in the transcription of gene groups involved in antitumor activity (more than 100 genes), including the genes involved in maintaining antitumor immunity as well as those mediating the antitumor effects of vitamin D, retinoids, and vitamin C.

Conclusion. The revealed changes in gene transcription enhance 7HMR-related effects on proteome proteins and suggest the prospects for using 7HMR for effective and safe prevention and treatment of nodular mastopathy and breast cancer.

About the Authors

I. Yu. Torshin
Federal Research Center "Computer Science and Control", Russian Academy of Sciences
Russian Federation

Ivan Yu. Torshin – PhD in Applied Mathematics, PhD in Chemistry, Senior Researcher

Scopus Author ID: 7003300274

Author ID: 54104

WOS ID: C-7683-2018

44 Vavilova Str., Moscow 119333



A. N. Rubashkina
Ivanovo State Medical Academy, Health Ministry of Russian Federation
Russian Federation

Anna N. Rubashkina – MD, Postgraduate Student, Department of Oncology, Obstetrics and Gynecology

8 Sheremetevsky Prospect, Ivanovo 153012



O. A. Gromova
Federal Research Center "Computer Science and Control", Russian Academy of Sciences
Russian Federation

Olga A. Gromova – MD, Dr Sci Med, Professor, Leading Researcher

44 Vavilova Str., Moscow 119333



References

1. Gromova O.A., Torshin I.Yu., Rubashkina A.N. et al. Systematic analysis of fundamental and clinical studies of lignan 7-hydroxymatairesinol. [Sistematicheskij analiz fundamental'nyh i klinicheskih issledovanij lignana 7-gidroksimatairezinola]. Effektivnaya farmakoterapiya. 2019;15(13):34–41. (In Russ.). https://doi.org/10.33978/2307-3586-2019-15-13-34-41.

2. Torshin I.Yu., Rubashkina A.N., Lapochkina N.P., Gromova O.A. Chemoreactome analysis of 7hydroxymatairesinol, 17-estradiol, phytoestrogen β-sitosterol and epigallocatechin-3-gallate. [Hemoreaktomnyj analiz 7-gidroksimatairezinola, 17-estradiola, fitoestrogena β-sitostirola i epigallokatekhin-3-gallata]. Obstetrics, Gynecology and Reproduction. 2020;14(3):347–60. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.152.

3. Rubashkina A.N., Lapochkina N.P., Torshin I.Y., Gromova O.A. The role of 7-hydroxymatairezinol in modulation of estrogen metabolism and therapy for mastopathy. [Rol' 7-gidroksimatairezinola v modulyacii metabolizma estrogenov i terapii mastopatii]. Ginekologiya. 2020;22(4):43–8. (In Russ.). https://doi.org/10.26442/20795696.2020.4.200183.

4. Torshin I.Yu. Sensing the change from molecular genetics to personalized medicine. In: "Bioinformatics in the Post-Genomic Era" series. NY, USA: Nova Biomedical Books, 2009. 366 p. ISBN 1-60692-217-0.

5. Torshin I.Yu., Gromova O.A. Expert data analysis in molecular pharmacology. [Ekspertnyj analiz dannyh v molekulyarnoj farmakologii]. Moscow, 2012. 684 p. (In Russ.).

6. Torshin I.Yu., Gromova O.A., Frolova D.E. et al. Dose-dependent chemotranscriptomics analysis of the differential effects of vitamin D3 on gene expression in human neuronal progenitor cells NPC and in MCF7 tumor cells. [Dozozavisimyj hemotranskriptomnyj analiz differencial'nogo dejstviya vitamina D na ekspressiyu genov v kletkah-predshestvennikah nejronov NPC i v opuholevyh kletkah MCF7 cheloveka]. Farmakokinetika i farmakodinamika. 2018;(2):35–51. (In Russ).

7. Torshin I. Yu., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 1: fundamentals of modern chemical bonding theory and the concept of the chemograph. Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2014;24(1):11–23. https://doi.org/10.1134/S1054661814010209.

8. Torshin I.Yu., Gromova O.A., Fedotova L.E. et al. Chemoinformatic analysis of orotic acid molecule indicates anti-inflammatory, neuroprotective and cardioprotective effects of magnesium ligand. [Hemoinformacionnyj analiz molekuly orotovoj kisloty ukazyvaet na protivovospalitel'nye, nejroprotektornye i kardioprotektornye effekta liganda magniya]. Farmateka. 2013;(13): 95–104. (In Russ.).

9. Gromova O.A., Torshin I.Yu., Fedotova L.E., Gromov A.N. Chemoreactome analysis of ethylmethylhydroxypyridine succinate. Neurology, neuropsychiatry, psychosomatics. [Hemoreaktomnyj analiz sukcinata etilmetilgidroksipiridina]. Nevrologiya, nejropsihiatriya, psihosomatika. 2016;8(3):53–60. (In Russ.). https://doi.org/10.14412/2074-2711-2016-3-53-60.

10. Gromova O.A., Torshin I.Yu., Fedotova L.E. Geriatric information analysis of the molecular properties of mexidole. [Gerontoinformacionnyj analiz effekt molekuly meksidola]. Nevrologiya, nejropsihiatriya, psihosomatika. 2017;9(4):46–54. (In Russ.). https://doi.org/10.14412/2074-27112017-4-46-54.

11. Torshin I.Y. The study of the solvability of the genome annotation problem on sets of elementary motifs. Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2011;21(4):652–62. https://doi.org/10.1134/S1054661811040171.

12. Torshin I.Y., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: factorization approach. Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2017;27(1):16–28. https://doi.org/10.1134/S1054661817010151.

13. Torshin I.Y., Rudakov K.V. On the application of the combinatorial theory of solvability to the analysis of chemographs. Part 2: local completeness of invariants of chemographs in view of the combinatorial theory of solvability. Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. 2014;24(2):196–208. https://doi.org/10.1134/S1054661814020151.

14. Mouchemore K.A., Anderson R.L., Hamilton J.A. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J. 2018;285(4):665–79. https://doi.org/10.1111/febs.14206.

15. Mohammed Z.M., Going J.J., Edwards J. et al. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2012;107(5):864–73. https://doi.org/10.1038/bjc.2012.347.

16. Wang Y., Yu X., Song H. et al. The STAT-ROS cycle extends IFN-induced cancer cell apoptosis. Int J Oncol. 2018;52(1):305–13. https://doi.org/10.3892/ijo.2017.4196.

17. Li J., Zhang J., Jin L. et al. Silencing lnc-ASAH2B-2 inhibits breast cancer cell growth via the mTOR pathway. Anticancer Res. 2018;38(6):3427–34. https://doi.org/10.21873/anticanres.

18. Rogowski M., Gollahon L., Chellini G., Assadi-Porter F.M. Uptake of 3-iodothyronamine hormone analogs inhibits the growth and viability of cancer cells. FEBS Open Bio. 2017;7(4):587– 601. https://doi.org/10.1002/2211-5463.12205.

19. Furbert-Harris P.M., Laniyan I., Harris D. et al. Activated eosinophils infiltrate MCF-7 breast multicellular tumor spheroids. Anticancer Res. 2003;23(1A):71–8.

20. Gromova O.A., Torshin I.Yu. Vitamin D. Paradigm change. [Vitamin D. Smena paradigmy. Pod red. E.I. Guseva, I.N. Zaharovoj]. Moscow: GEOTAR-Media, 2017. 568 p. (In Russ.).

21. Aouad P., Saikali M., Abdel-Samad R. et al. Antitumor activities of the synthetic retinoid ST1926 in two-dimensional and three-dimensional human breast cancer models. Anticancer Drugs. 2017;28(7):757–70. https://doi.org/10.1097/CAD.0000000000000511.

22. Gromova O.A., Torshin I.Yu., Filimonova M.V., Sorokina M.A. The role of vitamins in cancer prevention and their influence at anticancer treatment efficacy: systematic analysis of evidentiary research works. [Rol' vitaminov v profilaktike raka i ih vliyanie na effektivnost' onkoprotektornoj terapii: sistematicheskij analiz dokazatel'nyh issledovanij. Terapiya. 2018;(4):108–20. (In Russ.).

23. Gromova O.A., Torshin I.Yu., Martynov A.I. et al. Systematic analysis of vitamins use in a multidisciplinary hospital. [Sistematicheskij analiz primeneniya vitaminov v ramkah mnogoprofil'nogo stacionara]]. Terapiya. 2017;(6):89–99. (In Russ.).

24. Wang M., Cheng D., Peng J., Pickart C.M. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J. 2006;25(8):1710–19. https://doi.org/10.1038/sj.emboj.7601061.

25. Grieb B.C., Gramling M.W., Arrate M.P. et al. Oncogenic protein MTBP interacts with MYC to promote tumorigenesis. Cancer Res. 2014;74(13):3591–602. https://doi.org/10.1158/00085472.CAN-13-2149.

26. Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1):181–90. https://doi.org/10.1016/0022-5193(73)90198-7.

27. Heiss N.S., Bachner D., Salowsky R. et al. Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1. Genomics. 2000;67(2):153–63. https://doi.org/10.1006/geno.2000.6227.

28. Ye J., Lenain C., Bauwens S. et al. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell. 2010;142(2):230–42. https://doi.org/10.1016/j.cell.2010.05.032.

29. Wang C., Meier U.T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 2004;23(8):1857–67. https://doi.org/10.1038/sj.emboj.7600181.

30. Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8(1):69. https://doi.org/10.1186/s13073-016-0324-x.

31. Favre B., Plantard L., Aeschbach L. et al. SLURP1 is a late marker of epidermal differentiation and is absent in Mal de Meleda. J Invest Dermatol. 2007;127(2):301–8. https://doi.org/10.1038/sj.jid.5700551.

32. Ridge R.J., Sloane N.H. Partial N-terminal amino acid sequence of the anti-neoplastic urinary protein (ANUP) and the anti-tumour effect of the N-terminal nonapeptide of the unique cytokine present in human granulocytes. Cytokine. 1996;8(1):1–5. https://doi.org/10.1006/cyto.1996.0001.

33. Duncan C.J., Mohamad S.M., Young D.F. et al Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci Transl Med. 2015;7(307):307ra154. https://doi.org/10.1126/scitranslmed.aac4227.

34. Wolfson R.L., Chantranupong L., Wyant G.A. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543(7645):438–42. https://doi.org/10.1038/nature21423.

35. Peng M., Yin N., Li M.O. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543(7645):433–7. https://doi.org/10.1038/nature21378.


Review

For citations:


Torshin I.Yu., Rubashkina A.N., Gromova O.A. Chemotranscriptomic analysis of 7-hydroxymatairesinol-related effects on MCF7 human breast tumor cells. Obstetrics, Gynecology and Reproduction. 2023;17(5):584-596. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.409

Views: 566


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)