Preview

Obstetrics, Gynecology and Reproduction

Advanced search

OBJECTIVE METHODS FOR DETERMINE THE SEVERITY AND PROGNOSIS OF PERINATAL HYPOXIC-ISCHEMIC CNS

Full Text:

Abstract

Perinatal hypoxic-ischemic damage of the CNS is a major cause of mortality and neonatal incapacitating. The severity and prognosis is not always possible to accurately determine by clinical and tools methods of examination. Neurospecific proteins (NSP) could be as markers of pathological processes. One of the most studied among the NSP are gliofibrillary acid protein - GFAP, a structural protein of intermediate filaments of astrocytes, and neuron-specific enolase - NSE, neuronal cytoplasmic glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to 2-phosphoenolpyruvate. Investigation of the NSP concentration in the serum could be useful to evaluate the resistance of the BBB, determining the severity of CNS damage and prognosis for a disease in children with perinatal hypoxic-ischemic damages of the CNS.

Keywords


About the Author

D. V. Blinov
SBEI HPE RNSMU named after N.I. Pirogov
Russian Federation


References

1. Антонова О.М. Нейроспецифическая енолаза и ее роль в механизмах антительной агрессии в мозг. Дисс. к.м.н., 1997; 121 с.

2. Блинов Д.В.Общность ряда нейробиологических процессов при расстройствах деятельности ЦНС. Эпилепсия и пароксизмальные состояния. 2011; 2: 28-33

3. Блинов Д.В. Иммуноферментный анализ нейроспецифических антигенов в оценке проницаемости гематоэнцефалического барьера при перинатальном гипоксически-ишемическом поражении ЦНС (клинико-экспериментальное исследование). Дисс. к.м.н. Москва. 2004; 153 с.

4. Блинов Д.В., Сандуковская С.И. Статистико-эпидемиологическое исследование заболеваемости неврологического профиля на примере детского стационара. Эпилепсия и пароксизмальные состояния. 2010; 2(4): 12-22.

5. Бредбери М. Концепция гематоэнцефалического барьера. Москва. 1983; 480 с.

6. Ганнушкина И.В. Патофизиология нарушений мозгового кровообращения. Кн. Мозг: теоретические и клинические аспекты (под ред. Покровского В.И.). Медицина. 2003; с. 463-489.

7. Дегтярева М.Г. Динамический контроль функционального состояния ЦНС у детей с перинатальными постгипоксическими поражениями головного мозга на первом году жизни. Дисс. к.м.н. 2002; 254 с.

8. Журба Л.Т., Мастюкова Е.М. Нарушение психомоторного развития детей первого года жизни. Медицина. 1981; 272 с.

9. Казьмин А.М., Дайхина Л.В., Озерова О.Е. Состояние нервной системы в первые 12-16 месяцев у детей, перенесших перивентрикулярную лейкомаляцию в периоде новорожденности. Ж. материнство и детство. 1992; № 37 (4-5): с. 8 -13.

10. Каушанская Е.Я. Значение нейроспецифических белков и протеолитических ферментов в оценке тяжести критического состояния мозга новорожденных и их нервно-психического развития в раннем возрасте. Автореф., дисс. к.м.н. 1993; 22 с.

11. Классификация перинатальных поражений нервной системы у новорожденных. Методические рекомендации. ВУНМЦ МЗ РФ. 2000; 40 с.

12. Мухтарова С.Н. Значение определения нейроспецифической енолазы в оценке тяжести гипоксически-ишемических поражений мозга у новорожденных. Медицинские Новости Грузии. 2010; 4(181): 49-54

13. Чехонин В.П., Дмитриева Т.Б., Жирков Ю.А. Иммунохимический анализ нейроспецифических антигенов. Москва. 2000; 416 с.

14. Чехонин В.П., Лебедев С.В., Блинов Д.В., Гурина О.И., Семенова А.В., Лазаренко И.П., Петров С.В., Рябухин И.А., Рогаткин С.О., Володин Н.Н. Патогенетическая роль нарушения проницаемости гематоэнцефалического барьера для нейроспецифических белков при перинатальных гипоксически-ишемических поражениях ЦНС. Вопросы гинекологии, акушерства и перинатологии. 2004; т.3 № 2: с. 50-56.

15. Якунин Ю.А., Перминов В.С. Прогностические критерии гипоксических поражений ЦНС у детей. Рос. Вест. перинат. и пед. 1993; 38(2): 20-24.

16. Ahlsen G., Rosengren L., Beitrage M. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatry disorders. Biol. Psychiatry. 1993; 15 -33(10): 734-743.

17. Barber P.S., Lindsay M. Schvann cell of the olfactory nerves contain GFAP and resemble astrocytes/Neurosci. 1982; 7(12): 3077-3090.

18. Berger R., Garnier Y., Pathophysiology of perinatal brain damage. Brain. Res. Rew. 1999; 30: 107-134.

19. Berger R., Pierce M., Wisnievski S., Adelson P., Clark R., Ruppel R., Kochanek P. Neuronspecific enolase and s100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics. 2002; 109(2): 34-38.

20. Blennow M., Savman K., Ilves P., Thoresen M., Rosengren L. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr. 2001; 90: 1171-1175.

21. Brown J.K., Minns R.A. Non-accidental head injury, with particular reference to whiplash shaking injury and medico-legal aspects. Dev. Med. Child. Neurol. 1993; 35(10): 849-69.

22. Chopp M., Li Y. Apoptosis in focal cerebral ischemia. Acta Neurochir. 1996; 66: 21-26.

23. Chopp M., Chan P.H., Hsu C.Y., Cheung M.E., Jacobs T.P. DNA damage and repair in central nervous system injury: National Institute of Neurological Disorders and Stroke Workshop Summary. Stroke. 1996; 27 (3): 363-369

24. Clark R., Kochalek P., Adelson P. Increases in bcl-2 protein in cerebrospinal fluid and evidence for programmed cell death in infants and children after severe traumatic brain injury. J. Pediatr. 2000; 137: 197-204

25. Clark R.K., Lee E.V., Fish C.J., White R.F., Price W.J, Jonak Z.L., Feuerstein G.Z., Barone F.C. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Research Bull. 1993; 31: 565-572

26. Dennery P.A. Predicting neonatal brain injury: are we there yet? Arch. Pediatr. Adolesc. Med. 2003; 157(12): 1151-1152.

27. Delpech B., Delpech A., Vidard M. Glial fibrillary acidic protein in tumors of the nervous system. Br. J. Cancer. 1978; 37: 33-38.

28. Du Plessis A.J., Volpe J.J. Perinatal brain injury in the preterm and term newborn. Curr. Opin. Neurol. 2002; 15(2): 151-157.

29. Elimian A., Figueroa R., Verma U., Visintainer P., Sehgal P., Tejani N. Amniotic fluid neuron-specific enolase: a role in predicting neonatal neurologic injury? Obst. Gynecol. 1998; 92 (1): 546-55.

30. Eng L.F., Ghirnikar R.S., Lee Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem. Res. 2000; 9-10: 1439-1451.

31. Fazzi E., Lanners J., Danova S., Ferrarri-Ginevra O., Gheza C., Luparia A., Balottin U., Lanzi G. Stereotyped behaviours in blind children. Brain Dev. 1999; 21(8): 522-528.

32. Garcia-Alix A., Cabanas F., Pellicer A., Hernanz A., Stiris T.A., Quero J. Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concen-trations to the neurologic condition of asphyxiated full-term infants. Pediatrics. 1994; 93: 234 -240

33. Greishen G., Ischaemia of the preterm brain. Biol. Neonate. 1992; 62: 243-247.

34. Grogaard B., Schurer L., Gerdin B., Arfors K.-E. (). The role of polymorphonuclear leukocytes in postischemic delayed hypoperfusion. In Oxygen Free Radicals in Shock, ed. U. Novelli, Karger, Basel, Florence. 1985; 74-78.

35. Giulian D., Reactive microglia and ischemic injury. In: Primer on cerebrovascular diseases (Welsh M., Caplan L., Siesjo B., Weir B., Reis D., eds.). San Diego, CA, Academic. 1997; 117-124.

36. Haataja L., Mercuri E., Regev R., Cowan F., Rutherford M., Dubowitz V., Dubowitz L. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 1999;135(2 Pt 1): 153-161.

37. Hunt R.W., Loughnan P., Fink A.M., Volpe J.J., Inder T.E. Magnetic resonance demonstration in the newborn of generalized cerebral venous dilation with spontaneous resolution. Eur. J. Paediatr. Neurol. 2002; 6(5): 289-92.

38. Huppi P.S., Warfield S., Kikinis R., Barnes P.D., Zientara G.P., Jolesz F.A., Tsuji M.K., Volpe J.J. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann. Neurol. 1998; 43(2): 224-35.

39. Iadecola C. Mechanisms of cerebral ischemic damage. In: Cerebral ischemia (W. Watz ed.). New Jersey, Totowa, Humana Press. 1999; 3-33.

40. Inder T.E., Volpe J.J. Mechanisms of perinatal brain injury. Semin. Neonatol. 2000; 5(1): 3-16.

41. Kermer P., Klocker N., Bahr M. Neuronal death after brain injury (models, mechanisms, and therapeutic strategies in vivo). Cell Tissue Res. 1999; 298: 383-395.

42. Levene M., Role of excitatory amino acid antagonists in the management of birth asphyxia. Biol Neonate. 1992; 62: 248-251.

43. McGeer P.L., Kawamata T., Walker D.G., Akiyama H., Tooyama I., McGeer E.G. Microglia in degenerative neurological disease. Glia. 1993; 7: 84-92.

44. Mokuno K., Kato K., Kavai K., Matsuoka Y., Yanagi T., Sobue I. Neuron-specific enolase and s-100 protein levels in cerebrospinal fluid of patient with various neurological diseases. J. Neurol. Sci. 1983; 60: 443-451.

45. Moller M., Ingild A., Bock E. Immunohistochemical demonstration of S-100 protein and GFA protein in intersticial cells of rat pineal gland. Brain. Res. 1978; 140(1): 1-13.

46. Nagdyman N., K men W., Ko H., Muller C., Obladen M. Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy after Birth Asphyxia. Pediatric Research. 2001; 49(4): 133-139.

47. Ogawa H., Sato Y., Tackeshita I. Transient expression glial fibrillary acidic protein in developing oligodendrogliocytes in vitro. Develop. Brain Res. 1985: 18(1-2): 133-141.

48. Oh S.H., Lee J.G., Na S.J., Park J.H., Choi Y.C., Kim W.J. Prediction of early clinical severity and extent of neuronal damage in anterior-circulation infarction using the initial serum neuron-specific enolase level. Arch. Neurol. 2003; 60(1): 37-41.

49. Palmer C. Neurobiology of perinatal asphyxia. Penn. State Coll. Med. 2001; 1: 1-18.

50. Petty M., Wettstein J. Elements of cerebral microvascular ischaemia. Brain Res. Reviews. 2001; 36: 23-34.

51. Roth S.C., Edwards A.D., Cady E.B., Delpy D.T., Wyatt J.S., Azzopardi D. Relation between cerebral oxidative metabolism following birth asphyxia and neurodevelopmental outcome and brain growth at one year. Dev. Med. Child. Neurol. 1992; 34: 285-95.

52. Ruppel R., Kochalek P., Adelson P. Excitotoxicy after severe traumatic brain injury in infants and children: the role of chield abuse. J. Pediatr. 2001; 138: 18-25.

53. Tan S., Parks D.A. Preserving brain function during neonatal asphyxia. Clinics in Perinatology. 1999; 26(3): 733-735.

54. Thomberg E., Thiringer K., Hagberg H., Kjellmer I. Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch. Dis. Child. Fetal. Neonatal. 1995; 72: 39-42.

55. Thompson C.M., Puterman A.S., Linley L.L., Hann F.M., Vanderelst C.W., Molteno C.D. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr. 1997; 86(7): 757-761.

56. Volpe J.J. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol. 1998; 5(3): 135-151.

57. Volpe J.J. Neonatal seizures: current concepts and revised classification. Pediatrics. 1989; 84(3): 422-428.

58. Volpe J.J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 2001; 50 (5): 553-562.

59. Volpe J.J. Neurology of the Newborn. Saunders, Philadelfia. 1995; p. 422.

60. Volpe J.J. Overview: normal and abnormal human brain development. Ment. Retard. Dev. Disabil. Res. Rev. 2000; 6(1): 1-5.

61. Volpe J.J. Perinatal brain injury: from pathogenesis to neuroprotection. Ment. Retard. Dev. Disabil. Res. Rev. 2001; 7(1): 56-64.

62. Zhang F., White J., Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J. Cereb. Blood Flow. Metab. 1994; 14: 217-226.


For citation:


Blinov D.V. OBJECTIVE METHODS FOR DETERMINE THE SEVERITY AND PROGNOSIS OF PERINATAL HYPOXIC-ISCHEMIC CNS. Obstetrics, Gynecology and Reproduction. 2011;5(2):5-12. (In Russ.)

Views: 199


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)