Preview

Obstetrics, Gynecology and Reproduction

Advanced search

The role of luteinizing hormone activity in controlled ovarian stimulation for assisted reproductive technologies

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2026.699

Abstract

Luteinizing hormone (LH) activity plays a key role in regulating folliculogenesis, ovulation, and luteinization by determining the effectiveness of controlled ovarian stimulation (COS) protocols in assisted reproductive technologies (ART). LH stimulates androgen synthesis in theca cells serving as a platform for estrogen production in granulosa cells driven by follicle-stimulating hormone (FSH), and regulates receptor expression, oocyte meiotic maturation, and luteal phase formation. Current evidence indicates that a balanced combination of FSH and LH activity is essential for optimal follicular growth and full oocyte maturation. LH deficiency leads to decreased estradiol production, impaired steroidogenesis, and reduced fertilization outcomes. The addition of active LH-containing supplements improves treatment efficacy in women with hypogonadotropic hypogonadism, diminished ovarian reserve, ovarian hyporesponsiveness, as well as in older reproductive-age patients and those undergoing gonadotropin-releasing hormone antagonist protocols. The use of human menopausal gonadotropin and its highly purified form, as well as recombinant LH, enhances hormonal balance, improves oocyte and embryo quality, and reduces the risk of ovarian hyperstimulation syndrome. Incorporation of LH activity into COS regimens supports more physiological follicular maturation and a balanced steroid response. Optimization of LH dosing and timing, along with personalized therapy based on patient age, ovarian reserve, and genetic characteristics, increases ART efficacy, improves treatment outcomes, and ensures a safer and more predictable reproductive result.

About the Authors

O. A. Chuprina
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Oksana A. Chuprina

4 Mitrofana Sedina Str., Krasnodar 350063



F. R. Rakhmatullin
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Fanis R. Rakhmatullin

3 Lenin Str., Ufa 450008



L. I. Pechenik
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Lira I. Pechenik

29 Nahichevansky Lane, Rostov-on-Don 344022



T. F. Nemerovskaia
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Tatiana F. Nemerovskaia

29 Nahichevansky Lane, Rostov-on-Don 344022



R. M. Aidinova
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Radima M. Aidinova

29 Nahichevansky Lane, Rostov-on-Don 344022



V. N. Merkulova
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Victoria N. Merkulova

29 Nahichevansky Lane, Rostov-on-Don 344022



V. V. Guzii
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Varvara V. Guzii

29 Nahichevansky Lane, Rostov-on-Don 344022



E. P. Shulga
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elizaveta P. Shulga

29 Nahichevansky Lane, Rostov-on-Don 344022



A. R. Galina
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Adelina R. Galina

3 Lenin Str., Ufa 450008



E. F. Gareeva
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elvina F. Gareeva

3 Lenin Str., Ufa 450008



E. I. Rogova
Vernadsky Crimean Federal University
Russian Federation

Ekaterina I. Rogova

4 Academician Vernadsky Avenue, Simferopol 295007



A. M. Kebedova
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Aida M. Kebedova

1 Ostrovityanova Str., Moscow 117513



D. A. Ogurliev
Dagestan State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Dalgat A. Ogurliev

1 Lenin Square, Makhachkala, 367005 



G. S. Dresvyankin
Ural State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Grigory S. Dresvyankin

3 Repina Str., Еkaterinburg 620028



References

1. Anvarova Sh.A., Shukurov F.I., Tulametova Sh.A. Innovative methods for solving the problem of female infertility associated with endocrine disorders. [Innovacionnye metody resheniya problemy zhenskogo besplodiya, associirovannogo s endokrinnymi narusheniyami]. Obstetrics, Gynecology and Reproduction. 2024;18(5):706–19. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.514.

2. Kurtser M.A., Kasyanova G.V., Ovchinnikova M.M., Khetagurova D.T. Retrospective comparative study on artificial reproductive technology outcomes in women undergoing in vitro fertilization with recombinant gonadotropins. [Retrospektivnoe sravnitel'noe issledovanie iskhodov vspomogatel'nyh reproduktivnyh tekhnologij u zhenshchin v programmah ekstrakorporal'nogo oplodotvoreniya s primeneniem rekombinantnyh gonadotropinov]. Obstetrics, Gynecology and Reproduction. 2022;16(3):277–86. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.304.

3. Bashmakova N.V., Novoselova E.N., Nazarenko T.A. et al. Real clinical practice of infertility treatment in Russia: a collective opinion of 425 reproductologists. [Real'naya klinicheskaya praktika lecheniya besplodiya v Rossii: mnenie 425 vrachej-reproduktologov]. Obstetrics, Gynecology and Reproduction. 2023;17(6):680–706. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.468.

4. Orlova N.A., Kovnir S.V., Khodak Yu.A. et al. Recombinant human luteinizing hormone for the treatment of infertility: the generation of producer cell lines. [Rekombinantnyj lyuteiniziruyushchij gormon cheloveka dlya terapii besplodiya: poluchenie linij-producentov]. Obstetrics, Gynecology and Reproduction. 2017;11(3):33–42. (In Russ.). https://doi.org/10.17749/2313-7347.2017.11.3.033-042.

5. Boiarskiĭ K.Iu. Influence of glycosylation of FSH on follicular dynamics and ovarian stimulation in IVF/ICSI programs. [Vliyanie glikozilirovaniya molekuly FSG na follikulyarnuyu dinamiku i ovarial'nuyu stimulyaciyu v programmah EKO/IKSI (obzor literatury)]. Problemy reprodukcii. 2012;(4):40–4. (In Russ.)

6. Cole L.A. Biological functions of hCG and hCG-related molecules. Reprod Biol Endocrinol. 2010;8:102. https://doi.org/10.1186/1477-7827-8-102.

7. Arroyo A. Kim B., Yeh J. Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reprod Sci. 2020;27(6):1223–52. https://doi.org/10.1007/s43032-019-00137-x.

8. Mao R., Hou X., Feng X. et al. Recombinant human luteinizing hormone increases endometrial thickness in women undergoing assisted fertility treatments: a systematic review and meta-analysis. Front Pharmacol. 2024;15:1434625. https://doi.org/10.3389/fphar.2024.1434625.

9. Di Segni N., Busnelli A., Secchi M. et al. Luteinizing hormone supplementation in women with hypogonadotropic hypogonadism seeking fertility care: Insights from a narrative review. Front Endocrinol (Lausanne). 2022;13:907249. https://doi.org/10.3389/fendo.2022.907249.

10. Anderson R.C., Newton C.L., Anderson R.A., Millar R.P. Gonadotropins and their analogs: current and potential clinical applications. Endocr Rev. 2018;39(6):911–37. https://doi.org/10.1210/er.2018-00052.

11. Casarini L., Simoni M. Recent advances in understanding gonadotropin signaling. Fac Rev. 2021;10:41. https://doi.org/10.12703/r/10-41.

12. Smits G., Campillo M., Govaerts C. et al. Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible for ligand specificity. EMBO J. 2003;22(11):2692–703. https://doi.org/10.1093/emboj/cdg260.

13. Duan J., Xu P., Cheng X. et al. Structures of full-length glycoprotein hormone receptor signalling complexes. Nature. 2021;598(7882):688–92. https://doi.org/10.1038/s41586-021-03924-2.

14. Duan J., Xu P., Zhang H. et al. Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor. Nat Commun. 2023;14(1):519. https://doi.org/10.1038/s41467-023-36170-3.

15. Troppmann B., Kleinau G., Krause G., Gromoll J. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update. 2013;19(5):583–602. https://doi.org/10.1093/humupd/dmt023.

16. Grzesik P., Kreuchwig A., Rutz C. et al. Differences in signal activation by LH and hCG are mediated by the LH/CG receptor's extracellular hinge region. Front Endocrinol (Lausanne). 2015;6:140. https://doi.org/10.3389/fendo.2015.00140.

17. Riccetti L., Yvinec R., Klett D. et al. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. Sci Rep. 2017;7(1):940. https://doi.org/10.1038/s41598-017-01078-8.

18. Casarini L., Santi D., Brigante G., Simoni M. Two hormones for one receptor: evolution, biochemistry, actions, and pathophysiology of LH and hCG. Endocr Rev. 2018;39(5):549–92. https://doi.org/10.1210/er.2018-00065.

19. Jonas K.C., Chen S., Virta M. et al. Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Sci Rep. 2018;8(1):2239. https://doi.org/10.1038/s41598-018-20722-5.

20. Simoni M., Paradiso E., Lockhart V. et al. Pleotropism of gonadotropin action. LE STUDIUM Multidisciplinary Journal. 2020:4:1–7. https://doi.org/10.34846/le-studium.194.02.fr.03-2020.

21. Conforti A., Di Girolamo R., Guida M. et al. Pharmacogenomic of LH and its receptor: are we ready for clinical practice? Reprod Biol Endocrinol. 2025;23(Suppl 1):29. https://doi.org/10.1186/s12958-025-01359-2.

22. Casarini L., Riccetti L., De Pascali F. et al. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. Int J Mol Sci. 2017;18(5):926. https://doi.org/10.3390/ijms18050926.

23. La Marca A., Longo M., Sighinolfi G. et al. New insights into the role of LH in early ovarian follicular growth: a possible tool to optimize follicular recruitment. Reprod Biomed Online. 2023;47(6):103369. https://doi.org/10.1016/j.rbmo.2023.103369.

24. Shoham Z. The clinical therapeutic window for luteinizing hormone in controlled ovarian stimulation. Fertil Steril. 2002;77(6):1170–7. https://doi.org/10.1016/s0015-0282(02)03157-6.

25. Lisi F., Rinaldi L., Fishel S. et al. Use of recombinant follicle-stimulating hormone (Gonal F) and recombinant luteinizing hormone (Luveris) for multiple follicular stimulation in patients with a suboptimal response to in vitro fertilization. Fertil Steril. 2003а;79(4):1037–8. https://doi.org/10.1016/s0015-0282(02)04917-8.

26. Bosch E., Alviggi C., Lispi M. et al. Reduced FSH and LH action: implications for medically assisted reproduction. Hum Reprod. 2021;36(6):1469–80. https://doi.org/10.1093/humrep/deab065.

27. Babichev V.N. Organization and functioning of the neuroendocrine system. [Organizaciya i funkcionirovanie nejroendokrinnoj sistemy]. Problemy endokrinologii. 2013;59(1):62–9. (In Russ.).

28. Wu .J, Nayudu P.L., Kiesel P.S., Michelmann H.W. Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol Reprod. 2000;63(1):320–7. https://doi.org/10.1095/biolreprod63.1.320.

29. Hill M.J., Levens E.D., Levy G. et al. The use of recombinant luteinizing hormone in patients undergoing assisted reproductive techniques with advanced reproductive age: a systematic review and meta-analysis. Fertil Steril. 2012;97(5):1108–14.e1. https://doi.org/10.1016/j.fertnstert.2012.01.130.

30. Conforti A., Esteves S.C., Di Rella F. et al. The role of recombinant LH in women with hypo-response to controlled ovarian stimulation: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2019;17(1):18. https://doi.org/10.1186/s12958-019-0460-4.

31. Santi D., Casarini L., Alviggi C., Simoni M. Efficacy of follicle-stimulating hormone (FSH) alone, FSH + luteinizing hormone, human menopausal gonadotropin or FSH + human chorionic gonadotropin on assisted reproductive technology outcomes in the "personalized" medicine era: a meta-analysis. Front Endocrinol (Lausanne). 2017;8:114. https://doi.org/10.3389/fendo.2017.00114.

32. Nair A.K., Peegel H., Menon K.M. The role of luteinizing hormone/human chorionic gonadotropin receptor-specific mRNA binding protein in regulating receptor expression in human ovarian granulosa cells. J Clin Endocrinol Metab. 2006;91(6):2239–43. https://doi.org/10.1210/jc.2005-2739.

33. Menon K.M., Menon B. Regulation of luteinizing hormone receptor expression by an RNA binding protein: role of ERK signaling. Indian J Med Res. 2014;140 Suppl(Suppl 1):S112–9.

34. Lunenfeld B., Bilger W., Longobardi S. et al. The development of gonadotropins for clinical use in the treatment of infertility. Front Endocrinol (Lausanne). 2019;10:429. https://doi.org/10.3389/fendo.2019.00429.

35. Cozzolino M., Mossetti L., Mariani G. et al. The ovarian stimulation regimen does not affect aneuploidy or blastocyst rate. Reprod Biomed Online. 2024;49(2):103851. https://doi.org/10.1016/j.rbmo.2024.103851.

36. Beketova A.N., Krasnopol'skaia K.V., Nazarenko T.A., Kabanova D.I. Urinary and recombinant gonadotropins in IVF (a review). [Mochevye i rekombinantnye gonadotropiny v programmah EKO (obzor literatury)]. Problemy reprodukcii. 2014;(3):45–52. (In Russ.).

37. Ezcurra D., Humaidan P. A review of luteinising hormone and human chorionic gonadotropin when used in assisted reproductive technology. Reprod Biol Endocrinol. 2014;12:95. https://doi.org/10.1186/1477-7827-12-95.

38. Moro F., Scarinci E., Palla C. et al. Highly purified hMG versus recombinant FSH plus recombinant LH in intrauterine insemination cycles in women ≥35 years: a RCT. Hum Reprod. 2015; 30(1):179–85. https://doi.org/10.1093/humrep/deu302.

39. Orvieto R. HMG versus recombinant FSH plus recombinant LH in ovarian stimulation for IVF: does the source of LH preparation matter? Reprod Biomed Online. 2019;39(6):1001–6. https://doi.org/10.1016/j.rbmo.2019.08.010.

40. Pacchiarotti A., Sbracia M., Frega A. et al. Urinary hMG (Meropur) versus recombinant FSH plus recombinant LH (Pergoveris) in IVF: a multicenter, prospective, randomized controlled trial. Fertil Steril. 2010;94(6):2467–9. https://doi.org/10.1016/j.fertnstert.2010.04.035.

41. Tehraninejad E.S, Taghinejad M.F., Rashidi B.H., Haghollahi F. Controlled ovarian stimulation with r-FSH plus r-LH vs. HMG plus r-FSH in patients candidate for IVF/ICSI cycles: an RCT. Int J Reprod Biomed. 2017;15(7):435–40.

42. Nedresky D., Singh G. Physiology, Luteinizing Hormone. 2022 Sep 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan. 2022 Sep 26.

43. Ovarian Stimulation TEGGO, Bosch E., Broer S., Griesinger G. et al. ESHRE guideline: ovarian stimulation for IVF/ICSI†. Hum Reprod Open. 2020;2020(2):hoaa009. https://doi.org/10.1093/hropen/hoaa009.

44. De Placido G., Mollo A., Alviggi C. et al. Rescue of IVF cycles by HMG in pituitary down-regulated normogonadotrophic young women characterized by a poor initial response to recombinant FSH. Hum Reprod. 2001;16(9):1875–9. https://doi.org/10.1093/humrep/16.9.1875.

45. Ferraretti A.P., Gianaroli L., Magli M.C. et al. Exogenous luteinizing hormone in controlled ovarian hyperstimulation for assisted reproduction techniques. Fertil Steril. 2004;82(6):1521–6. https://doi.org/10.1016/j.fertnstert.2004.06.041.

46. Kolibianakis E.M., Collins J., Tarlatzis B.C. et al. Among patients treated for IVF with gonadotrophins and GnRH analogues, is the probability of live birth dependent on the type of analogue used? A systematic review and meta-analysis. Hum Reprod Update. 2006;12(6):651–71. https://doi.org/10.1093/humupd/dml038.

47. Humaidan P., Chin W., Rogoff D. et al. Efficacy and safety of follitropin alfa/lutropin alfa in ART: a randomized controlled trial in poor ovarian responders. Hum Reprod. 2017;32(3):544–55. https://doi.org/10.1093/humrep/dew360.

48. Mochtar M.H., Danhof N.A., Ayeleke R.O. et al. Recombinant luteinizing hormone (rLH) and recombinant follicle stimulating hormone (rFSH) for ovarian stimulation in IVF/ICSI cycles. Cochrane Database Syst Rev. 2017;5(5):CD005070. https://doi.org/10.1002/14651858.CD005070.pub3.

49. Westergaard L.G., Laursen S.B., Andersen C.Y. Increased risk of early pregnancy loss by profound suppression of luteinizing hormone during ovarian stimulation in normogonadotrophic women undergoing assisted reproduction. Hum Reprod. 2000;15(5):1003–8. https://doi.org/10.1093/humrep/15.5.1003.

50. Melo P., Eapen A., Chung Y. et al. Controlled ovarian stimulation protocols for assisted reproduction: a network meta-analysis. Cochrane Database Syst Rev. 2025;7(7):CD012586. https://doi.org/10.1002/14651858.CD012586.pub2.

51. Shoham Z., Mannaerts B., Insler V., Coelingh-Bennink H. Induction of follicular growth using recombinant human follicle-stimulating hormone in two volunteer women with hypogonadotropic hypogonadism. Fertil Steril. 1993;59(4):738–42. https://doi.org/10.1016/s0015-0282(16)55852-x.

52. Platteau P., Nyboe Andersen A., Loft A. et al. Highly purified HMG versus recombinant FSH for ovarian stimulation in IVF cycles: a randomized assessor-blind study. Reprod Biomed Online. 2008;17(2):190–8. https://doi.org/10.1016/s1472-6483(10)60194-0.

53. Pezzuto A., Ferrari B., Coppola F., Nardelli GB. LH supplementation in down-regulated women undergoing assisted reproduction with baseline low serum LH levels. Gynecol Endocrinol. 2010;26(2):118–24. https://doi.org/10.3109/09513590903215516.

54. He W., Lin H., Lv J. et al. The impact of luteinizing hormone supplementation in gonadotropin-releasing hormone antagonist cycles: a retrospective cohort study. Gynecol Endocrinol. 2018;34(6):513–7. https://doi.org/10.1080/09513590.2017.1411473.

55. Paterson N.D., Foong S.C., Greene C.A. Improved pregnancy rates with luteinizing hormone supplementation in patients undergoing ovarian stimulation for IVF. J Assist Reprod Genet. 2012;29(7):579–83. https://doi.org/10.1007/s10815-012-9740-z.

56. Setti A.S., Braga D., Iaconelli A., Borges E. Improving implantation rate in 2nd ICSI cycle through ovarian stimulation with FSH and LH in GnRH antagonist regimen. Rev Bras Ginecol Obstet. 2021;43(10):749–58. https://doi.org/10.1055/s-0041-1736306.

57. Wang M., Huang R., Liang X. et al. Recombinant LH supplementation improves cumulative live birth rates in the GnRH antagonist protocol: a multicenter retrospective study using a propensity score-matching analysis. Reprod Biol Endocrinol. 2022;20(1):114. https://doi.org/10.1186/s12958-022-00985-4.

58. Kol S. LH supplementation in ovarian stimulation for IVF: the individual, LH-deficient, patient perspective. Gynecol Obstet Invest. 2020;85(1):1–5. https://doi.org/10.1159/000509162.

59. Lehert P., Kolibianakis E.M., Venetis C.A. et al. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis. Reprod Biol Endocrinol. 2014;12:17. https://doi.org/10.1186/1477-7827-12-17.

60. Arvis P., Giraudeau B., Fabbro-Peray P. et al. Effect of recombinant LH supplementation on cumulative live birth rate in poor ovarian responders: a real-world, multicentre controlled study. Reprod Biol Endocrinol. 2021;19:189. https://doi.org/10.1016/j.rbmo.2020.08.035.

61. Chinta P., Broer S., van Wely M. et al. POSEIDON classification and the proposed treatment options for poor/suboptimal ovarian responders: an update and review. Hum Reprod Open. 2021;2021(1):hoaa070. https://doi.org/10.1093/hropen/hoaa070.

62. Levi-Setti P.E., Zerbetto I., Baggiani A. et al. An observational retrospective cohort trial on 4,828 IVF cycles evaluating different low prognosis patients following the POSEIDON criteria. Front Endocrinol (Lausanne). 2019;10:282. https://doi.org/10.3389/fendo.2019.00282.

63. Berker B., Şükür Y.E., Özdemir E.Ü. et al. Human menopausal gonadotropin commenced on early follicular period increases live birth rates in POSEIDON group 3 and 4 poor responders. Reprod Sci. 2021;28(2):488–94. https://doi.org/10.1007/s43032-020-00300-9.

64. Marchiani S., Tamburrino L., Benini F. et al. LH supplementation of ovarian stimulation protocols influences follicular fluid steroid composition contributing to the improvement of ovarian response in poor responder women. Sci Rep. 2020;10(1):12907. https://doi.org/10.1038/s41598-020-69325-z.

65. Conforti A., Esteves S.C., Di Rella F. et al. The role of recombinant LH in women with hypo-response to controlled ovarian stimulation: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2019;17(1):18. https://doi.org/10.1186/s12958-019-0460-4.

66. Alviggi C., Vigilante L., Cariati F. et al. The role of recombinant LH in ovarian stimulation: what's new? Reprod Biol Endocrinol. 2025;23(Suppl 1):38. https://doi.org/10.1186/s12958-025-01361-8.

67. Alviggi C., Pettersson K., Longobardi S. et al. A common polymorphic allele of the LH beta-subunit gene is associated with higher exogenous FSH consumption during controlled ovarian stimulation for assisted reproductive technology. Reprod Biol Endocrinol. 2013;11:51. https://doi.org/10.1186/1477-7827-11-51.

68. Ga R., Cheemakurthi R., Kalagara M. et al. Effect of LHCGR gene polymorphism (rs2293275) on LH supplementation protocol outcomes in second IVF cycles: a retrospective study. Front Endocrinol (Lausanne). 2021;12:628169. https://doi.org/10.3389/fendo.2021.628169.

69. Smitz J., Andersen A.N., Devroey P. et al. Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients. Hum Reprod. 2007;22(3):676–87. https://doi.org/10.1093/humrep/del445.

70. Ziebe S., Lundin K., Janssens R. et al. Influence of follicular stimulation with HP-hMG or recombinant FSH on embryo quality parameters and clinical outcome in IVF patients. Reprod Biomed Online. 2007;15(5):539–46. https://doi.org/10.1093/humrep/dem221.

71. Liang Y., Hou X., Chen H. et al. Assisted reproductive technology outcomes in women with normal ovarian response receiving recombinant luteinizing hormone/human menopausal gonadotropin: an observational study. Int J Womens Health. 2024;16:1103–11. https://doi.org/10.2147/IJWH.S454410.

72. Caserta D., Mantovani A., Marci R. et al. Environment and women's reproductive health. Hum Reprod Update. 2011;17(3):418–33. https://doi.org/10.1093/humupd/dmq061.

73. Witz C.A., Daftary G.S., Doody K.J. et al. Randomized, assessor-blinded trial comparing highly purified human menotropin and recombinant follicle-stimulating hormone in high responders undergoing intracytoplasmic sperm injection. Fertil Steril. 2020;114(2):321–30. https://doi.org/10.1016/j.fertnstert.2020.03.029.

74. Khair A., Brown T., Markert M. et al. Highly purified human menopausal gonadotropin (HP-hMG) versus recombinant follicle-stimulating hormone (rFSH) for controlled ovarian stimulation in US predicted high-responder patients: a cost-comparison analysis. Pharmacoecon Open. 2023;7(5):851–60. https://doi.org/10.1007/s41669-023-00429-8.

75. Conforti A., Esteves S.C., Humaidan P. et al. Recombinant human luteinizing hormone co-treatment in ovarian stimulation for assisted reproductive technology in women of advanced reproductive age: a systematic review and meta-analysis of randomized controlled trials. Reprod Biol Endocrinol. 2021;19(1):91. https://doi.org/10.1186/s12958-021-00759-4.

76. Matorras R., Prieto B., Exposito A. et al. Mid-follicular LH supplementation in women aged 35-39 years undergoing ICSI cycles: a randomized controlled study. Reprod Biomed Online. 2009;19(6):879–87. https://doi.org/10.1016/j.rbmo.2009.09.016.

77. Vuong T.N. Phung H.T., Ho M.T. Recombinant follicle-stimulating hormone and recombinant luteinizing hormone versus recombinant follicle-stimulating hormone alone during GnRH antagonist ovarian stimulation in patients aged ≥ 35 years: a randomized controlled trial. Hum Reprod. 2015;30(5):1188–95. https://doi.org/10.1093/humrep/dev038.

78. Bielfeld A.P., Schwarze J.E., Verpillat P. et al. Effectiveness of recombinant human FSH: recombinant human LH combination treatment versus recombinant human FSH alone for assisted reproductive technology in women aged 35-40 years. Reprod Biomed Online. 2024;48(6):103725. https://doi.org/10.1016/j.rbmo.2023.103725.

79. König T..E, van der Houwen L.E., Overbeek A. et al. Recombinant LH supplementation to a standard GnRH antagonist protocol in women of 35 years or older undergoing IVF/ICSI: a randomized controlled multicentre study. Hum Reprod. 2013;28(10):2804–12. https://doi.org/10.1093/humrep/det266.

80. Bosch E. Comment on 'Recombinant LH supplementation to a standard GnRH antagonist protocol in women of 35 years old or older undergoing IVF/ICSI: a randomized controlled multicentre study'. Hum Reprod. 2014;29(3):636–7. https://doi.org/10.1093/humrep/det431.


Review

For citations:


Chuprina O.A., Rakhmatullin F.R., Pechenik L.I., Nemerovskaia T.F., Aidinova R.M., Merkulova V.N., Guzii V.V., Shulga E.P., Galina A.R., Gareeva E.F., Rogova E.I., Kebedova A.M., Ogurliev D.A., Dresvyankin G.S. The role of luteinizing hormone activity in controlled ovarian stimulation for assisted reproductive technologies. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2026.699

Views: 37

JATS XML

ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)