Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Uterine natural killer cells and pregnancy outcomes: mechanisms, biomarkers, and therapeutic targets

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.674

Abstract

Uterine natural killer cells (uNK) represent the dominant population of immune cells in the decidual tissue during early pregnancy, playing a key role in embryo implantation, spiral artery remodeling, and the establishment of proper uteroplacental blood flow. Unlike peripheral natural killer cells (pNK), uNK cells exhibit limited cytotoxicity and pronounced regulatory functions mediated through the production of cytokines, growth factors, and adhesion molecules. An imbalance in uNK cell activation or inhibition is associated with developing several pregnancy complications, including recurrent pregnancy loss, preeclampsia, and infertility associated with endometriosis. Here, we analyze current concepts assessing uNK cell phenotype and functional activity, crosstalk with trophoblasts and regulatory T cells (Treg), as well as the role for key receptors – NKp46 (natural killer protein 46), NKp44 (natural killer protein 44), NKp30 (natural killer protein 30), CD16 (cluster of differentiation 16), NKG2A (natural killer group 2 member A receptor), and cognate ligand HLA-E (human leukocyte antigen E). Special attention is paid to biomarkers reflecting uNK cell status and their prognostic value in reproductive medicine. Therapeutic approaches aimed at modulating uNK cell activity are also considered. In particular, it has been shown that the use of glucocorticoids (e.g., prednisolone) reduces endometrial CD56⁺ uNK cell counts and is applied in patients with recurrent pregnancy loss and repeated implantation failure. Granulocyte colony-stimulating factor (G-CSF) is capable of stimulating angiogenesis, enhancing endometrial receptivity, and increasing the clinical pregnancy rate in women with impaired uNK function. Monoclonal antibodies targeting activating NK cell receptors (NKp46, NKp44, NKp30, CD16) are considered an experimental approach to alleviate excessive uNK cytotoxicity in endometriosis and recurrent miscarriage. Another promising direction relies on applying targeted intervention in immune checkpoints, particularly modulating interaction between the NKG2A receptor and its ligand HLA-E, which may optimize spiral artery remodeling and uteroplacental blood flow.

About the Authors

A. A. Dzhegutanov
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Amir A. Dzhegutanov

310 Mira Str., Stavropol 355017



K. A. Sherysheva
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Kristina A. Sherysheva

3 Leninа Str., Ufa 450008



A. R. Mutalipov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Almaz R. Mutalipov

3 Leninа Str., Ufa 450008



L. A. Akhkamova
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Leysan A. Akhkamova

3 Leninа Str., Ufa 450008



R. F. Gimazetdinova
Orenburg State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ralina F. Gimazetdinova

6 Sovetskaya Str., Orenburg 460000



A. V. Pyatkova
Pirogov Russian National Research Medical University (Pirogov University), Ministry of Health of the Russian Federation
Russian Federation

Alina V. Pyatkova

1 Ostrovityanova Str., Moscow 117513



E. N. Levytchenkova
Samara State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ekaterina N. Levytchenkova

89 Chapaevskaya Str., Samara 443099



V. D. Galeev
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Vadim D. Galeev

3 Leninа Str., Ufa 450008



V. Li
Ural State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Victoria Li

3 Repina Str., Еkaterinburg 620028



A. V. Zyryanov
Ural State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Aleksandr V. Zyryanov

3 Repina Str., Еkaterinburg 620028



S. Charyeva
Tula State University
Russian Federation

Selbi Charyeva

92 Lenin Avenue, Tula 300012



M. A. Abosov
Tula State University
Russian Federation

Mirzoumarkhon A. Abosov

92 Lenin Avenue, Tula 300012



A. I. Idrisov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ainur I. Idrisov

3 Leninа Str., Ufa 450008



V. I. Kritsyna
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Victoria I. Kritsyna

29 Nakhichevansky Lane, Rostov-on-Don 344022



References

1. Sotnikova N.Yu., Malyshkina A.I., Kust A.V., Voronin D.N. Analysis of the differentiation of peripheral B-lymphocytes in pregnant women with a habitual miscarriage. [Analiz differencirovki perifericheskih B-limfocitov u zhenshchin s ugrozhayushchim samoproizvol'nym vykidyshem i privychnym nevynashivaniem beremennosti v anamneze]. Sibirskiy nauchnyy meditsinskiy zhurnal. 2021;41(3):38–44. (In Russ.). https://doi.org/10.18699/SSMJ20210305.

2. Galkina D.E., Makarenko T.A., Okladnikov D.V. Immunological aspects of normal and pathological pregnancy. [Immunologicheskie aspekty normal'noj i patologicheski protekayushchej beremennosti]. Vestnik Rossijskoj akademii medicinskih nauk. 2022;77(1):13–24. (In Russ.). https://doi.org/10.15690/vramn1507.

3. Ticconi C., Di Simone N., Campagnolo L., Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell. 2021;72:101586. https://doi.org/10.1016/j.tice.2021.101586.

4. Saribas G.S., Akarca Dizakar O., Ozogul C. et al. Ellagic acid increases implantation rates with its antifibrotic effect in the rat model of intrauterine adhesion. Pathol Res Pract. 2023;246:154499. https://doi.org/10.1016/j.prp.2023.154499.

5. Mar'in A.A., Tantsereva I.G., Bolshakov V.V., Kolomiets N.E. Medicinal plants in correction of menopausal and postmenopausal disorders. [Lekarstvennye rasteniya v korrekcii klimaktericheskih rasstrojstv]. Fundamental'naya i klinicheskaya medicina. 2019;4(1):80–90. (In Russ.).

6. Arck P.C., Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med. 2013;19(5):548–56. https://doi.org/10.1038/nm.3160.

7. Vacca P., Vitale C., Montaldo E. et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci U S A. 2011;108(6):2402–7. https://doi.org/10.1073/pnas.1016257108.

8. Acar N., Ustunel I., Demir R. Uterine natural killer (uNK) cells and their missions during pregnancy: a review. Acta Histochem. 2011;113(2):82–91. https://doi.org/10.1016/j.acthis.2009.12.001.

9. Kopcow H.D., Allan D.S., Chen X. et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A. 2005;102(43):15563–8. https://doi.org/10.1073/pnas.0507835102.

10. Huhn O., Zhao X., Esposito L. et al. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? Front Immunol. 2021;12:607669. https://doi.org/10.3389/fimmu.2021.607669.

11. Zhang X., Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol. 2021;12:728291. https://doi.org/10.3389/fimmu.2021.728291.

12. Chao K.H., Yang Y.S., Ho H.N. et al. Decidual natural killer cytotoxicity decreased in normal pregnancy but not in anembryonic pregnancy and recurrent spontaneous abortion. Am J Reprod Immunol. 1995;34(5):274–80. https://doi.org/10.1111/j.1600-0897.1995.tb00953.x.

13. King A., Birkby C., Loke Y.W. Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell Immunol. 1989;118(2):337–44. https://doi.org/10.1016/0008-8749(89)90382-1.

14. Doisne J.M., Balmas E., Boulenouar S. et al. Composition, development, and function of uterine innate lymphoid cells. J Immunol. 2015;195(8):3937–45. https://doi.org/10.4049/jimmunol.1500689.

15. Sojka D.K., Yang L., Plougastel-Douglas B. et al. Cutting edge: local proliferation of uterine tissue-resident NK cells during decidualization in mice. J Immunol. 2018;201(9):2551-2556. https://doi.org/10.4049/jimmunol.1800651.

16. Sojka D.K., Yang L., Yokoyama W.M. Uterine natural killer cells. Front Immunol. 2019;10:960. https://doi.org/10.3389/fimmu.2019.00960.

17. Gamliel M., Goldman-Wohl D., Isaacson B. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity. 2018;48(5):951–962.e5. https://doi.org/10.1016/j.immuni.2018.03.030.

18. Prefumo F., Ganapathy R., Thilaganathan B., Sebire N.J. Influence of parity on first trimester endovascular trophoblast invasion. Fertil Steril. 2006;85(4):1032–6. https://doi.org/10.1016/j.fertnstert.2005.09.055.

19. Ashkar A.A., Di Santo J.P., Croy B.A. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192(2):259–70. https://doi.org/10.1084/jem.192.2.259.

20. Ruiz J.E., Kwak J.Y., Baum L. et al. Effect of intravenous immunoglobulin G on natural killer cell cytotoxicity in vitro in women with recurrent spontaneous abortion. J Reprod Immunol. 1996;31(1–2):125–41. https://doi.org/10.1016/0165-0378(96)00969-2.

21. Kuroda K., Venkatakrishnan R., James S. et al. Elevated periimplantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signaling in decidualizing stromal cells. J Clin Endocrinol Metab. 2013;98(11):4429–37. https://doi.org/10.1210/jc.2013-1977.

22. Wilkens J., Male V., Ghazal P. et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191(5):2226–35. https://doi.org/10.4049/jimmunol.1300958.

23. Kalkunte S.S., Mselle T.F., Norris W.E. еt al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol. 2009;182(7):4085–92. https://doi.org/10.4049/jimmunol.0803769.

24. Zhou Y., Fisher S.J., Janatpour M. et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 1997;99(9):2139–51. https://doi.org/10.1172/JCI119387.

25. Co E.C., Gormley M., Kapidzic M. et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol Reprod. 2013;88(6):155. https://doi.org/10.1095/biolreprod.112.099465.

26. Liu Y., Gao S., Zhao Y. et al. Decidual natural killer cells: a good nanny at the maternal-fetal interface during early pregnancy. Front Immunol. 2021;12:663660. https://doi.org/10.3389/fimmu.2021.663660.

27. King A., Allan D.S., Bowen M. et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30(6):1623–31. https://doi.org/10.1002/1521-4141(200006)30:6<1623::AID-IMMU1623>3.0.CO;2-M.

28. Shojaei Z., Jafarpour R., Mehdizadeh S. et al. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: а comprehensive review and update. Pathol Res Pract. 2022;238:154062. https://doi.org/10.1016/j.prp.2022.154062.

29. Martin P., Gurevich D.B. Macrophage regulation of angiogenesis in health and disease. Semin Cell Dev Biol. 2021;119:101–10. https://doi.org/10.1016/j.semcdb.2021.06.010.

30. Li X.F., Charnock-Jones D.S., Zhang E. et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab. 2001;86(4):1823–34. https://doi.org/10.1210/jcem.86.4.7418.

31. El-Azzamy H., Dambaeva S.V., Katukurundage D. et al. Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses. Am J Reprod Immunol. 2018;80(4):e13024. https://doi.org/10.1111/aji.13024.

32. Quenby S., Kalumbi C., Bates M. et al. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril. 2005;84(4):980–4. https://doi.org/10.1016/j.fertnstert.2005.05.012.

33. Tuckerman E., Mariee N., Prakash A. et al. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol. 2010;87(1–2):60–6. https://doi.org/10.1016/j.jri.2010.07.001.

34. Michimata T., Ogasawara M.S., Tsuda H. et al. Distributions of endometrial NK cells, B cells, T cells, and Th2/Tc2 cells fail to predict pregnancy outcome following recurrent abortion. Am J Reprod Immunol. 2002;47(4):196–202. https://doi.org/10.1034/j.1600-0897.2002.01048.x.

35. Lachapelle M.H., Miron P., Hemmings R., Roy D.C. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J Immunol. 1996;156(10):4027–34.

36. Li H., Hou Y., Zhang S. et al. CD49a regulates the function of human decidual natural killer cells. Am J Reprod Immunol. 2019;81(4):e13101. https://doi.org/10.1111/aji.13101

37. Guo W., Fang L., Li B. et al. Decreased human leukocyte antigen-G expression by miR-133a contributes to impairment of proinvasion and proangiogenesis functions of decidual NK cells. Front Immunol. 2017;8:741. https://doi.org/10.3389/fimmu.2017.00741.

38. Maev I.V., Andreev D.N., Kucheriavyĭ Iu A. Helicobacter pylori infection and extragastroduodenal diseases. [Lekarstvennye rasteniya v korrekcii klimaktericheskih rasstrojstv]. Fundamental'naya i klinicheskaya medicina. 2015;87(8):103–10. (In Russ.). https://doi.org/10.17116/terarkh2015878103-110.

39. Tossetta G., Fantone S., Giannubilo S.R. et al. Pre-eclampsia onset and SPARC: a possible involvement in placenta development. J Cell Physiol. 2019;234(5):6091–8. https://doi.org/10.1002/jcp.27344.

40. Croy B.A., van den Heuvel M.J., Borzychowski A.M., Tayade C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev. 2006;214:161–85. https://doi.org/10.1111/j.1600-065X.2006.00447.x.

41. Kieckbusch J., Gaynor L.M., Moffett A., Colucci F. MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nat Commun. 2014;5:3359. https://doi.org/10.1038/ncomms4359.

42. Moffett A., Shreeve N. First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum Reprod. 2015;30(7):1519–25. https://doi.org/10.1093/humrep/dev098.

43. Fukui A., Funamizu A., Yokota M. et al. Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia. J Reprod Immunol. 2011;90(1):105–10. https://doi.org/10.1016/j.jri.2011.04.006.

44. Zhang J., Dunk C.E., Shynlova O. et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. 2019;39:531–9. https://doi.org/10.1016/j.ebiom.2018.12.015.

45. Du M., Wang W., Huang L. et al. Natural killer cells in the pathogenesis of preeclampsia: a double-edged sword. J Matern Fetal Neonatal Med. 2022;35(6):1028–35. https://doi.org/10.1080/14767058.2020.1740675.

46. Saghafian Larijani S., Biglari E., Biglarifar R. The correlation between serum sodium levels and preeclampsia severity in pregnant women: a cross-sectional study. J Renal Inj Prev. 2025;14(4):e38440. https://doi.org/10.34172/jrip.2025.38440.

47. Gabidullina R.I., Koshelnikova E.A., Shigabutdinova T.N. et al. Endometriosis: impact on fertility and pregnancy outcomes [Endometrioz: vliyanie na fertil'nost' i iskhody beremennosti]. Ginekologiya. 2021;23(1):12–7. (In Russ.). https://doi.org/10.26442/20795696.2021.1.200477.

48. Pant A., Moar K., Arora T.K., Maurya P.K. Implication of biosignatures in the progression of endometriosis. Pathol Res Pract. 2024;254:155103. https://doi.org/10.1016/j.prp.2024.155103.

49. Giuliani E., Parkin K.L., Lessey B.A. et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–9. https://doi.org/10.1111/aji.12259.

50. Thiruchelvam U., Wingfield M., O'Farrelly C. Increased uNK progenitor cells in Women with endometriosis and Infertility are associated with low levels of endometrial stem cell factor. Am J Reprod Immunol. 2016;75(4):493–502. https://doi.org/10.1111/aji.12486.

51. Pašalić E., Tambuwala M.M., Hromić-Jahjefendić A. Endometriosis: classification, pathophysiology, and treatment options. Pathol Res Pract. 2023;251:154847. https://doi.org/10.1016/j.prp.2023.154847.

52. Tang A.W., Alfirevic Z., Turner M.A. et al. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum Reprod. 2013;28(7):1743–52. https://doi.org/10.1093/humrep/det117.

53. Quenby S., Kalumbi C., Bates M. et al. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril. 2005;84(4):980–4. https://doi.org/10.1016/j.fertnstert.2005.05.012.

54. Yang Y., Ru H., Zhang S. et al. The effect of granulocyte colony-stimulating factor on endometrial receptivity of implantation failure mouse. Reprod Sci. 2025;32(1):200–17. https://doi.org/10.1007/s43032-024-01527-6.

55. Kalem Z., Namli Kalem M., Bakirarar B. et al. Intrauterine G-CSF administration in recurrent implantation failure (RIF): An Rct. Sci Rep. 2020;10(1):5139. https://doi.org/10.1038/s41598-020-61955-7.

56. Bumbăcea R.S., Udrea M.R., Ali S., Bojincă V.C. Balancing benefits and risks: a literature review on hypersensitivity reactions to human G-CSF (granulocyte colony-stimulating factor). Int J Mol Sci. 2024;25(9):4807. https://doi.org/10.3390/ijms25094807.

57. Scarpellini F., Sbracia M. Use of granulocyte colony-stimulating factor for the treatment of unexplained recurrent miscarriage: a randomised controlled trial. Hum Reprod. 2009;24(11):2703–8. https://doi.org/10.1093/humrep/dep240.

58. Arefi S., Fazeli E., Esfahani M. et al. Granulocyte-colony stimulating factor may improve pregnancy outcome in patients with history of unexplained recurrent implantation failure: an RCT. Int J Reprod Biomed. 2018;16(5):299–304.

59. Santjohanser C., Knieper C., Franz C. et al. Granulocyte-colony stimulating factor as treatment option in patients with recurrent miscarriage. Arch Immunol Ther Exp (Warsz). 2013;61(2):159–64. https://doi.org/10.1007/s00005-012-0212-z.


Review

For citations:


Dzhegutanov A.A., Sherysheva K.A., Mutalipov A.R., Akhkamova L.A., Gimazetdinova R.F., Pyatkova A.V., Levytchenkova E.N., Galeev V.D., Li V., Zyryanov A.V., Charyeva S., Abosov M.A., Idrisov A.I., Kritsyna V.I. Uterine natural killer cells and pregnancy outcomes: mechanisms, biomarkers, and therapeutic targets. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.674

Views: 67


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)