Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Cryopreservation as an assisted reproductive technology

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.651

Abstract

Introduction. According to the World Health Organization, infertility affects approximately one in six reproductive-age people. Assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), have been available for more than three decades and have resulted in the birth of millions of children worldwide. Cryopreservation allows for the storage of large numbers of cells and tissues and is used in medicine for various purposes, including IVF.

Aim: to analyze literature-based data on physical principles, methods, and prospects of cryopreservation in reproductive medicine.

Materials and Methods. A review of scientific publications reported by domestic and international authors was conducted using the PubMed/MEDLINE, Google Scholar, and eLibrary databases from 1953 to September 2024. The following keywords were retrieved: “infertility”, “assisted reproductive technologies”, “in vitro fertilization”, “cryopreservation”, “cryoprotectants”, “cryoprotective agents”, “vitrification”, “gamete selection”, “sperm cryopreservation”, “female gamete cryopreservation”, “embryo cryopreservation”. There were predominantly reviewed full-text articles in Russian and English published in peer-reviewed scientific journals, containing original data or systematic analysis, as well as information on the effectiveness, safety, and biological impact of cryopreservation methods. For historical and contextual coverage of the topic, selected monographs, reviews, regulatory documents, and conference materials were also used, provided their relevance to the subject matter. These sources were not included in the assessment of method effectiveness but were considered in the context of the timeline for the technologies and ethical-legal aspects. A total of 5,876 publications were analyzed, of which 74 were included in the final review.

Results. The physical and chemical principles of cryopreservation, classification of cryoprotective agents (CPA), as well as comparative effectiveness for various freezing methods (slow, rapid, ultra-rapid, and vitrification) were systematized. It was established that vitrification provides the highest survival rates for oocytes and embryos compared to conventional freezing, particularly when high-concentration CPAs are used in combination with non-penetrating agents. An effect of alternative carriers and biomaterials (e.g., hyaluronan-phenolic hydroxyl microcapsules, Volvox globator) for single-sperm cryopreservation was examined. Approaches to assessing gamete quality after thawing were summarized, including promising methods such as cell-free DNA analysis and the application of artificial intelligence for embryo morphology assessment. Unresolved issues were identified, including high CPAs-related toxicity, lack of standardized clinical protocols, as well as ethical and legal concerns regarding cryomaterial handling. The need for further research aimed at developing safe and effective ART-related cryopreservation protocols is emphasized.

Conclusion. The analysis revealed knowledge gaps related to the optimization of clinical cryopreservation protocols for embryos and female gametes. Currently, vitrification remains the preferred method, providing the highest survival rates for biological material.

About the Authors

I. R. Abdulazimova
Kadyrov Chechen State University
Russian Federation

Iman R. Abdulazimova

32 Aslanbek Sheripov Str., Grozny, 364907



L. L. Mezhidova
North Ossetian State Medical Academy, Ministry of Health of the Russian Federation
Russian Federation

Leyla L. Mezhidova

40 Pushkinskaya Str., Vladikavkaz, Republic of North Ossetia–Alania 362019



R. S. Barkinkhoeva
Ingush State University
Russian Federation

Rabbiya S. Barkinkhoeva

7 Zyazikov Avenue, Magas 386001



Z. U. Zarieva
Ingush State University
Russian Federation

Zeinap U. Zarieva

7 Zyazikov Avenue, Magas 386001



Z. Kh. Abadieva
Ingush State University
Russian Federation

Zukhra Kh. Abadieva

7 Zyazikov Avenue, Magas 386001



Kh. R. Magamadova
Berbekov Kabardino-Balkarian State University
Russian Federation

Khava R. Magamadova

173 Chernyshevsky Str., Nalchik 360004



A. L. Vazikaeva
Berbekov Kabardino-Balkarian State University
Russian Federation

Amina L. Vazikaeva

173 Chernyshevsky Str., Nalchik 360004



A. A. Bzhekshieva
Berbekov Kabardino-Balkarian State University
Russian Federation

Aliya A. Bzhekshieva

173 Chernyshevsky Str., Nalchik 360004



D. A. Bogatyreva
Berbekov Kabardino-Balkarian State University
Russian Federation

Disana A. Bogatyreva

173 Chernyshevsky Str., Nalchik 360004



E. A. Kauts
Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elza A. Kauts

112 Bolshaya Kazachya Str., Saratov 410012



M. A. Bayanova
Berbekov Kabardino-Balkarian State University
Russian Federation

Marita A. Bayanova

173 Chernyshevsky Str., Nalchik 360004



Kh. U. Umarova
Berbekov Kabardino-Balkarian State University
Russian Federation

Khadishat U. Umarova

173 Chernyshevsky Str., Nalchik 360004



Kh. A. Satuev
Berbekov Kabardino-Balkarian State University
Russian Federation

Khusein A. Satuev

173 Chernyshevsky Str., Nalchik 360004



M. A.F. Qasem
Berbekov Kabardino-Balkarian State University
Russian Federation

Mohammed A.F. Qasem

173 Chernyshevsky Str., Nalchik 360004



References

1. Zegers-Hochschild F., Adamson G.D., de Mouzon J. et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod. 2009;24(11):2683–7. https://doi.org/10.1093/humrep/dep343.

2. Bártolo A., Reis S., Monteiro S. et al. Psychological adjustment of infertile men undergoing fertility treatments: an association with sperm parameters. Arch Psychiatr Nurs. 2016;30(5):521–6. https://doi.org/10.1016/j.apnu.2016.04.014.

3. Tyuvina N.A., Nikolaevskaya A.O. Infertility and mental disorders in women. Communication 1. Nevrologiya, neiropsikhiatriya, psikhosomatika. [Besplodie i psihicheskie rasstrojstva u zhenshch]. 2019;11(4):117–24. (In Russ.). https://doi.org/10.14412/2074-2711-2019-4-117-124.

4. Beke A. Genetic causes of female infertility. Exp Suppl. 2019;111:367–83. https://doi.org/10.1007/s11934-019-0942-0.

5. Zhuraev I.I., Khaidarov O.L., Bobokulov N.A. Male infertility. [Muzhskoe besplodie]. Proceedings of International Conference on Scientific Research in Natural and Social Sciences. 2023;2(3):163–70. (In Russ.).

6. Tschudin S., Bitzer J. Psychological aspects of fertility preservation in men and women affected by cancer and other life-threatening diseases. Hum Reprod Update. 2009;15(5):587–97. https://doi.org/10.1093/humupd/dmp016.

7. Kenney L.B., Antal Z., Ginsberg J.P. et al. Improving male reproductive health after childhood, adolescent, and young adult cancer: progress and future directions for survivorship Research. J Clin Oncol. 2018;36(21):2160–8. https://doi.org/10.1200/JCO.2017.76.3839.

8. Dishuck C.F., Perchik J.D., Porter K.K. et al. Advanced imaging in female infertility. Curr Urol Rep. 2019;20(11):77. https://doi.org/10.1007/s11934-019-0942-0.

9. Bala R., Singh V., Rajender S. et al. Environment, lifestyle, and female infertility. Reprod Sci. 2021;28(3):617–38. https://doi.org/10.1007/s43032-020-00279-3.

10. Mustafa M., Sharifa A.M., Hadi J.E. et al. Male and female infertility: causes, and management. IOSR J Dent Med Sci. 2019;18(9):27–32. https://doi.org/10.9790/0853-1809132732.

11. Aripova T.U., Musakhodzhaeva D.A., Fayzullaeva N.Ya., Yarmukhamedov A.S. Various aspects of male infertility (literature review). [Razlichnye aspekty besplodiya u muzhchin (obzor literatury)]. Zhurnal teoreticheskoj i klinicheskoj mediciny. 2020;(4):141–5. (In Russ.).

12. Galimov Sh.N., Bozhedomov V.A., Galimova E.F. et al. Male infertility: molecular and immunological aspects: monogaphy. [Muzhskoe besplodie: molekulyarnye i immunologicheskie aspekty]. Moscow: GEOTAR-Media, 2020. 204 p. (In Russ.).

13. Kirakosyan E.V., Nazarenko T.A., Pavlovich S.V. Search for the causes of reproductive system disorders: a research review. [Poisk prichin formirovaniya narushenij reproduktivnoj sistemy: obzor nauchnyh issledovanij]. Akusherstvo i ginekologiya. 2021;(11):18–25. https://doi.org/10.18565/aig.2021.11.18-25. (In Russ.).

14. No C.O. Female age-related fertility decline. Fertil Steril. 2014;101(3):633–4. https://doi.org/10.1016/j.fertnstert.2013.12.032.

15. Songolova E.N. Control of IVF accounting under compulsory medical insurance. [Kontrol' ucheta EKO po OMS. Materialy Vtorogo s"ezda medicinskih statistikov Moskvy «Statistika zdravoohraneniya novogo vremeni»]. Moscow, 2020. 84–6. (In Russ.).

16. Sidorova T.F. Philosophical analysis of procreation in the value dimension. Population and Economics. 2020;4(4):57–66. https://doi.org/10.3897/popecon.4.e58271.

17. Shevlyuk N.N. Fundamentals, biological, medical and social aspects of assisted reproductive technologies: history of creation, current state, prospects. [Fundamental'nye osnovy, biologicheskie, medicinskie i social'nye aspekty vspomogatel'nyh reproduktivnyh tekhnologij: istoriya sozdaniya, sovremennoe sostoyanie i perspektivy]. Zhurnal anatomii i gistopatologii. 2024;13(2):100–9. (In Russ.). https://doi.org/10.18499/2225-7357-2024-13-2-100-109.

18. Walters E.M., Benson J.D., Woods E.J. et al. The history of sperm cryopreservation. In: Spermbanking: Theory and practice. Cambridge University Press, 2009. 1–10.

19. Castellani C. Spermatozoan biology from Leeuwenhoek to Spallanzani. J Hist Biol. 1973;6:37–68. https://doi.org/10.1007/BF00137298.

20. Lovelock J.E. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta. 1953;10(3):414–26. https://doi.org/10.1016/0006-3002(53)90273-X.

21. Jang T.H., Park S.C., Yang J.H. et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8. https://doi.org/10.1016/j.imr.2016.12.001.

22. Shenfield F., de Mouzon J., Scaravelli G. et al. ESHRE Working Group on Oocyte Cryopreservation in Europe. Oocyte and ovarian tissue cryopreservation in European countries: statutory background, practice, storage and use. Hum Reprod Open. 2020;2020:hoaa016. https://doi.org/10.1093/hropen/hox003.

23. Calhaz-Jorge C., de Geyter C., Kupka, M.S. et al. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod. 2016;31(2):233–48. https://doi.org/10.1093/humrep/dex264.

24. Odintsova I.A., Rusakova S.E., Schmidt A.A., Timoshkova Yu.L. Cryopreservation of gametes: history and current state of a question. [Kriokonservaciya polovyh kletok: istoriya i sovremennoe sostoyanie voprosa]. Geny i kletki. 2021;16(3):44–51 (In Russ.). https://doi.org/10.23868/202110005.

25. Öztürk A.E., Bucak M.N., Bodu M. et al. Cryobiology and cryopreservation of sperm. In: Cryopreservation – Current Advances and Evaluations. Ed. M. Quain. IntechOpen, 2019. 1–52 https://doi.org/10.5772/intechopen.89789.

26. AbdelHafez F., Bedaiwy M., El-Nashar S.A. et al. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update. 2009;15(2):153–64. https://doi.org/10.1093/humupd/dmn061.

27. Di Santo M., Tarozzi N., Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol. 2012;2012:854837. https://doi.org/10.1155/2012/854837.

28. Rios A.P., Botella I.M. Description and outcomes of current clinical techniques for sperm cryopreservation. EMJ Reprod Health. 2019;7(1):79–92. https://doi.org/10.33590/emjreprohealth/10310343.

29. Liu S., Li F. Cryopreservation of single-sperm: where are we today? Reprod Biol Endocrinol. 2020;18(1):41. https://doi.org/10.1186/s12958-020-00600-5.

30. Just A., Gruber I., Wöber M. et al. Novel method for the cryopreservation of testicular sperm and ejaculated spermatozoa from patients with severe oligospermia: a pilot study. Fertil Steril. 2004;82(2):445–7. https://doi.org/10.1016/j.fertnstert.2003.12.050.

31. Tomita K., Sakai S., Khanmohammadi M. et al. Cryopreservation of a small number of human sperm using enzymatically fabricated, hollow hyaluronan microcapsules handled by conventional ICSI procedures. J Assist Reprod Genet. 2016;33(4):501–11. https://doi.org/10.1007/s10815-016-0656-x.

32. Glander H.J., Schaller J. Hidden effects of cryopreservation on quality of human spermatozoa. Cell Tissue Bank. 2000;1(2):133–42. https://doi.org/10.1023/A:1010122800157.

33. Isachenko V., Isachenko E., Katkov I.I. et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71(4):1167–73. https://doi.org/10.1095/biolreprod.104.028811.

34. Maheshwari A., Bhattacharya S. Elective frozen replacement cycles for all: ready for prime time? Hum Reprod. 2013;28(1):6–9. https://doi.org/10.1093/humrep/des386.

35. Cohen J., Alikani M. The time has come to radically rethink assisted reproduction. Reprod Biomed Online. 2013;27(4):323–4. https://doi.org/10.1016/j.rbmo.2013.08.001.

36. Bosch E., De Vos M., Humaidan P. The future of cryopreservation in assisted reproductive technologies. Front Endocrinol (Lausanne). 2020;11:67. https://doi.org/10.3389/fendo.2020.00067.

37. McLaughlin M., Albertini D.F., Wallace W.H.B. et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24(3):135–42. https://doi.org/10.1093/molehr/gay002.

38. Gook D.A., Edgar D.H. Cryopreservation of female reproductive potential. Best Pract Res Clin Obstet Gynaecol. 2019;55:23–36.https://doi.org/10.18565/aig.2020.4.195-200.

39. Hussein R.S., Khan Z., Zhao Y. Fertility preservation in women: indications and options for therapy. Mayo Clin Proc. 2020;95(4):770–83. https://doi.org/10.1016/j.mayocp.2019.10.009.

40. Rivas Leonel E.C., Lucci C.M., Amorim C.A. Cryopreservation of human ovarian tissue: a review. Transfus Med Hemother. 2019;46(3):173–81. https://doi.org/10.1159/000499054.

41. Taylor M.J., Weegman B.P., Baicu S.C. et al. New approaches to cryopreservation of cells, tissues, and organs. Transfus Med Hemother. 2019;46(3):197–215. https://doi.org/10.1159/000499453.

42. Pegg D.E. The history and principles of cryopreservation. Semin Reprod Med. 2002;20(1):5–13. https://doi.org/10.1055/s-2002-23515.

43. Torquato P., Giusepponi D., Bartolini D. et al. Pre-analytical monitoring and protection of oxidizable lipids in human plasma (vitamin E and ω-3 and ω-6 fatty acids): an update for redox-lipidomics methods. Free Radic Biol Med. 2021;176:142–8. https://doi.org/10.1016/j.freeradbiomed.2021.09.012.

44. Pegg D.E. Principles of cryopreservation. Methods Mol Biol. 2007;368:39–57. https://doi.org/10.1007/978-1-59745-362-2_3.

45. Cobo A., García-Velasco J. A., Coello A. et al. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105(3):755–64. https://doi.org/10.1016/j.fertnstert.2015.11.027.

46. Ferraretti A.P., Gianaroli L., Magli C. et al. Elective cryopreservation of all pronucleate embryos in women at risk of ovarian hyperstimulation syndrome: efficiency and safety. Hum Reprod. 1999;14(6):1457–60. https://doi.org/10.1093/humrep/14.6.1457.

47. Shapiro B.S., Daneshmand S.T., Garner F.C. et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8. https://doi.org/10.1016/j.fertnstert.2011.05.050.

48. Aghahosseini M., Aleyasin A., Sarfjoo F.S. et al. In vitro fertilization outcome in frozen versus fresh embryo transfer in women with elevated progesterone level on the day of HCG injection: an RCT. Int J Reprod Biomed. 2017;15(12):757–62.

49. Alteri A., Pisaturo V., Somigliana E. et al. Cryopreservation in reproductive medicine during the COVID-19 pandemic: rethinking policies and European safety regulations. Hum Reprod. 2020;35(12):2650–7. https://doi.org/10.1093/humrep/deaa210.

50. Christianson M.S., Stern J.E., Sun F. et al. Embryo cryopreservation and utilization in the United States from 2004-2013. F S Rep. 2020;1(2):71–7. https://doi.org/10.1016/j.xfre.2020.05.010.

51. Ladeira C., Koppen G., Scavone F. et al. The comet assay for human biomonitoring: eEffect of cryopreservation on DNA damage in different blood cell preparations. Mutat Res Genet Toxicol Environ Mutagen. 2019;843:11–7. https://doi.org/10.1016/j.mrgentox.2019.02.002.

52. Guerif F., Bidault R., Cadoret V. et al. Parameters guiding selection of best embryos for transfer after cryopreservation: a reappraisal. Hum Reprod. 2002;17(5):1321–6. https://doi.org/10.1093/humrep/17.5.1321.

53. Yakubetc Yu.A., Deshko A.S., Golubets L.V. et al. Efficiency of cryopreservation of embryos obtained in vitro culture. [Effektivnost' kriokonservacii embrionov, poluchennyh v kul'ture in vitro]. Mezhdunarodnyj vestnik veterinarii. 2020;(3):169–75. (In Russ.).

54. Rienzi L.F., Iussig B., Dovere L. et al. Perspectives in gamete and embryo cryopreservation. Semin Reprod Med. 2018;36(5):253–64. https://doi.org/10.1055/s-0038-1677463.

55. Telfer E.E. Future developments: In vitro growth (IVG) of human ovarian follicles. Acta Obstet Gynecol Scand. 2019;98(5):653–8. https://doi.org/10.1111/aogs.13592.

56. Anderson R.A., Baird D.T. The development of ovarian tissue cryopreservation in Edinburgh: translation from a rodent model through validation in a large mammal and then into clinical practice. Acta Obstet Gynecol Scand. 2019;98(5):545–9. https://doi.org/10.1111/aogs.13560.

57. Hong B., Hao Y. The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: a retrospective study. Medicine (Baltimore). 2020;99(9):e18768. https://doi.org/10.1097/MD.0000000000018768.

58. Gleicher N., Orvieto R.J. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10(1):21. https://doi.org/10.1186/s13048-017-0318-3.

59. Whaley D., Damyar K., Witek R.P. et al. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021;30:963689721999617. https://doi.org/10.1177/09636897219996.

60. Raju R., Bryant S.J., Wilkinson B.L. et al. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj. 2021;1865(1):129749. https://doi.org/10.1016/j.bbagen.2020.129749.

61. Bojic S., Murray A., Bentley B.L. et al. Winter is coming: the future of cryopreservation. BMC Biol. 2021;19(1):56. https://doi.org/10.1186/s12915-021-00976-8.

62. Erol O.D., Pervin B., Seker M.E. et al. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells. 2021;13(9):1197–214. https://doi.org/10.4252/wjsc.v13.i9.1197.

63. Crisol M., Wu K., Laouar L. et al. Antioxidant additives reduce reactive oxygen species production in articular cartilage during exposure to cryoprotective agents. Cryobiology. 2020;96:114–21. https://doi.org/10.1016/j.cryobiol.2020.07.008.

64. Manchester L.C., Coto-Montes A., Boga J.A. et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403–19. https://doi.org/10.1111/jpi.12267.

65. Marcantonini G., Bartolini D., Zatini L. et al. Natural cryoprotective and cytoprotective agents in cryopreservation: a focus on melatonin. Molecules. 2022;27(10):3254. https://doi.org/10.3390/molecules27103254.

66. Len J.S., Koh W.S.D., Tan S.X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39(8):BSR20191601. https://doi.org/10.1042/BSR20191601.

67. Trounson A., Wood C., Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril. 1994;62(2):353–62. https://doi.org/10.1016/S0015-0282(16)56891-5.

68. Polyakova M.V. Cryopreservation of spermatogonial stem cells: possibilities of clinical application for fertility preservation in prepubertal patients. [Kriokonservaciya spermatogonial'nyh stvolovyh kletok: vozmozhnosti klinicheskogo primeneniya dlya sohraneniya fertil'nosti u pacientov predpubertatnogo vozrasta]. Zhurnal mediko-biologicheskih issledovanij. 2017;5(3):33–42. (In Russ.). https://doi.org/10.17238/issn2542-1298.2017.5.3.33.

69. Belova D.A. Actual problems of cryopreservation and storage of human reproductive biomaterial. [Aktual'nye problemy kriokonservacii i hraneniya reproduktivnogo biomateriala cheloveka]. Lex Genetica. 2024;3(3):26–43. (In Russ.). https://doi.org/10.17803/lexgen-2024-3-3-26-43.

70. Schulz M., Risopatrón J., Uribe P. et al. Human sperm vitrification: a scientific report. Andrology. 2020;8(6):1642–50. https://doi.org/10.1111/andr.12847.

71. Shah D., Rasappan, Shila, Gunasekaran K. A simple method of human sperm vitrification. MethodsX. 2019;6:2198–204. https://doi.org/10.1016/j.mex.2019.09.022.

72. Kravchuk Ya.N., Kalugina A.S., Bystrova O.V. et al. Efficiency and outcomes of programs with embryo cryopreservation in assisted reproductive technology protocols. [Effektivnost' i iskhody programm ckriokonservaciej embrionov v protokolah vspomogatel'nyh reproduktivnyh tekhnologij]. Zhurnal akusherstva i zhenskih boleznej. 2014;6(4):39–46 (In Russ.). https://doi.org/10.17816/JOWD63439-46.

73. Krasnopolskaya K.V., Sesina N.I., Badalyan G.V. et al. Slow freezing and vitrification of embryos. Comparison of efficiency. [Medlennoe zamorazhivanie i vitrifikaciya embrionov. Sravnenie effektivnosti]. Problemy reprodukcii. 2015;21(1):48–53 (In Russ.). https://doi.org/10.26442/2079-5696_2018.5.59-62.

74. Purge A.R. Cryopreservation of embryos: on the issue of the concept. [Kriokonservaciya embrionov: k voprosu o ponyatii]. Yuridicheskie issledovaniya. 2022;9:1–9 (In Russ.). https://doi.org/ 10.25136/2409-7136.2022.9.38707.


Review

For citations:


Abdulazimova I.R., Mezhidova L.L., Barkinkhoeva R.S., Zarieva Z.U., Abadieva Z.Kh., Magamadova Kh.R., Vazikaeva A.L., Bzhekshieva A.A., Bogatyreva D.A., Kauts E.A., Bayanova M.A., Umarova Kh.U., Satuev Kh.A., Qasem M.A. Cryopreservation as an assisted reproductive technology. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.651

Views: 297


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)