Preview

Акушерство, Гинекология и Репродукция

Расширенный поиск

Роль Wnt/β-катенинового сигнального пути в патогенезе эндометриоза

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.640

Аннотация

Эндометриоз – это хроническое эстрогензависимое заболевание, характеризующееся эктопическим ростом ткани, подобной эндометрию, за пределами матки. В последние годы все большее внимание уделяется роли Wnt/β-катенинового сигнального пути в патогенезе эндометриоза. Данный путь участвует в регуляции клеточной пролиферации, миграции, инвазии и фиброзных процессов. Гиперактивация Wnt/β-катенинового каскада способствует прогрессированию заболевания, хроническому воспалению и развитию спаечного процесса. Особое значение имеют микроРНК, регулирующие этот сигнальный путь. Изучение новых звеньев патогенеза эндометриоза открывает перспективы для неинвазивной диагностики и таргетной терапии. Дальнейшие исследования могут способствовать разработке новых методов лечения и улучшению качества жизни пациенток.

Об авторах

Е. В. Виривская
ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»; ООО «Сеть семейных медицинских центров»
Россия

Виривская Елена Владимировна, к.м.н.

302026 Орел, Комсомольская ул., д. 95
127006 Москва, ул. Садовая-Каретная, д. 8, стр. 6



И. В. Игнатко
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

Игнатко Ирина Владимировна, д.м.н., проф., член-корр. РАН

Scopus Author ID: 15118951800

WoS ResearcherID: H-2442-2018

eLibrary SPIN-code: 8073-1817

119048 Москва, ул. Трубецкая, д. 8, стр. 2



И. А. Снимщикова
ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева»
Россия

Снимщикова Ирина Анатольевна, д.м.н., проф.

302026 Орел, Комсомольская ул., д. 95



К. Р. Бахтияров
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

Бахтияров Камиль Рафаэльевич, д.м.н., проф.

Scopus Author ID: 57208396965

eLibrary SPIN-code: 4820-1340

119048 Москва, ул. Трубецкая, д. 8, стр. 2



А. С. Зуева
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

Зуева Алина Сергеевна

Scopus Author ID: 59132162700

WoS ResearcherID: JWO-2945-2024

eLibrary SPIN-code: 6190-4779

119048 Москва, ул. Трубецкая, д. 8, стр. 2



Т. Д. Капырина
ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)
Россия

Капырина Татьяна Дмитриевна

Scopus Author ID: 58631437000

eLibrary SPIN-code: 8659-5885

119048 Москва, ул. Трубецкая, д. 8, стр. 2



Список литературы

1. Becker C.M., Bokor A., Heikinheimo O. et al. ESHRE guideline: endometriosis. Hum Reprod Open. 2022;2022(2):hoac009. https://doi.org/10.1093/hropen/hoac009.

2. Wilbur M.A., Shih I.M., Segars J.H., Fader A.N. Cancer implications for patients with endometriosis. Semin Reprod Med. 2017;35(1):110–6. https://doi.org/10.1055/s-0036-1597120.

3. Endometriosis. World Health Organization, 2023. Режим доступа: https://www.who.int/newsroom/fact-sheets/detail/endometriosis. [Дата обращения: 25.02.2025].

4. Улумбекова Г.Э., Худова И.Ю. Оценка демографического, социального и экономического эффекта применения гормональной терапии при эндометриозе и аномальных маточных кровотечениях. ОРГЗДРАВ: новости, мнения, обучение. Вестник ВШОУЗ. 2022;8(1):82–113. https://doi.org/10.33029/2411-8621-2022-8-1-82-113.

5. Smolarz B., Szyłło K., Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int J Mol Sci. 2021;22(19):10554. https://doi.org/10.3390/ijms221910554.

6. Sampson J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol.1927;14:422–69. https://doi.org/10.1016/S00029378(15)30003-X.

7. Taylor H.S., Kotlyar A.M., Flores V.A. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet. 2021;397(10276):839–52. https://doi.org/10.1016/S01406736(21)00389-5.

8. Hayat R., Manzoor M., Hussain A. Wnt signaling pathway: a comprehensive review. Cell Biol Int. 2022;46(6):863–77. https://doi.org/10.1002/cbin.11797.

9. Steinhart Z., Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. https://doi.org/10.1242/dev.146589.

10. Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. https://doi.org/10.4161/org.4.2.5851.

11. Pataki C.A., Couchman J.R., Brábek J. Wnt signaling cascades and the roles of syndecan proteoglycans. J Histochem Cytochem. 2015;63(7):465–80. https://doi.org/10.1369/0022155415586961.

12. Zhang Y., Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.

13. Ranes M., Zaleska M., Sakalas S. et al. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81(16):3246–3261.e11. https://doi.org/10.1016/j.molcel.2021.07.013.

14. Yu F., Yu C., Li F. et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):1–24. https://doi.org/10.1038/s41392-021-00701-5.

15. Matsuzaki S., Darcha C. Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013;8(10):e76808. https://doi.org/10.1371/journal.pone.0076808.

16. Kawano Y., Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116(Pt 13):2627–34. https://doi.org/10.1242/jcs.00623.

17. Pazhohan A., Amidi F., Akbari-Asbagh F. et al. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1. Eur J Obstet Gynecol Reprod Biol. 2018;220:1–5. https://doi.org/10.1016/j.ejogrb.2017.10.025.

18. Heinosalo T., Gabriel M., Kallio L. et al. Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis. Hum Reprod. 2018;33(5):817–31. https://doi.org/10.1093/humrep/dey026.

19. Yang M., Li L., Huang X. et al. The DNA demethylation-regulated SFRP2 dictates the progression of endometriosis via activation of the Wnt/β-catenin signaling pathway. BMC Mol Cell Biol. 2023;24(1):12. https://doi.org/10.1186/s12860-023-00470-9.

20. Xu H., Yang J.J., Wang C.H. et al. Effect of Wnt/β-catenin signal pathway on of matrix metalloproteinase-7 and vascular endothelial growth factor gene expressions in endometriosis. Clin Exp Obstet Gynecol. 2016;43(4):573–7.

21. Zhang L., Xiong W., Xiong Y. et al. Intracellular Wnt/beta-catenin signaling underlying 17betaestradiol-induced matrix metalloproteinase 9 expression in human endometriosis. Biol Reprod. 2016;94(3):70. https://doi.org/10.1095/biolreprod.115.135574.

22. Wang Y., Hanifi-Moghaddam P., Hanekamp E.E. et al. Progesterone inhibition of Wnt/β-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009;15(18):5784–93. https://doi.org/10.1158/1078-0432.CCR-09-0814.

23. Zhu X., Li Y., Zhou R. et al. Knockdown of E-cadherin expression of endometrial epithelial cells may activate Wnt/β-catenin pathway in vitro. Arch Gynecol Obstet. 2018;297(1):117–23. https://doi.org/10.1007/s00404-017-4560-0.

24. Yamamoto S., Nishimura O., Misaki K. et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell. 2008;15(1):23–36. https://doi.org/10.1016/j.devcel.2008.05.007.

25. Lv Y., Zhang L., Ma J. et al. CTHRC1 overexpression promotes ectopic endometrial stromal cell proliferation, migration and invasion via activation of the Wnt/β-catenin pathway. Reprod Biomed Online. 2020;40(1):26–32. https://doi.org/10.1016/j.rbmo.2019.10.001.

26. Liu Y.-J., Du J., Li J. et al. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett. 2023;25(6):266. https://doi.org/10.3892/ol.2023.13852.

27. Zhang R., Lu H., Lyu Y.Y. et al. E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway. Sci Rep. 2017;7:44744. https://doi.org/10.1038/srep44744.

28. Ruan F., Ma J., Xu K. Silencing of CTHRC1 inhibits proliferation and metastasis of endometriotic stromal cells. Int J Clin Exp Pathol. 2016;9(10):10028–35.

29. Hu X., Bian Y., Wen X. et al. Collagen triple helix repeat containing 1 promotes endometrial cancer cell migration by activating the focal adhesion kinase signaling pathway. Exp Ther Med. 2020;20(2):1405–14. https://doi.org/ 10.3892/etm.2020.8833.

30. Chen J.-J., Xiao Z.-J., Meng X. et al. MRP4 sustains Wnt/β-catenin signaling for pregnancy, endometriosis and endometrial cancer. Theranostics. 2019;9(1):5049–64. https://doi.org/10.7150/thno.32097.

31. De P., Aske J.C., Dale A. et al. Addressing activation of WNT beta-catenin pathway in diverse landscape of endometrial carcinogenesis. Am J Transl Res. 2021;13(11):12168–80.

32. Ярмолинская М.И., Адамян Л.В. Эндометриоз-ассоциированный болевой синдром и спаечный процесс – новые аспекты патогенеза и возможности терапии. Проблемы репродукции. 2023;29(2):93–100. https://doi.org/10.17116/repro20232902193.

33. Guo S.W. Fibrogenesis resulting from cyclic bleeding: the Holy Grail of the natural history of ectopic endometrium. Hum Reprod. 2018;33(3):353–6. https://doi.org/10.1093/humrep/dey015.

34. Katoh M., Igarashi M., Fukuda H. et al. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328(2):198–206. https://doi.org/10.1016/j.canlet.2012.09.017.

35. Shao X., Wei X. FOXP1 enhances fibrosis via activating Wnt/β-catenin signaling pathway in endometriosis. Am J Transl Res. 2018;10(11):3610–8.

36. Shi L., Xue X., Tian H. et al. WEE1 promotes endometriosis via the Wnt/β-catenin signaling pathway. Reprod Biol Endocrinol. 2021;19(1):161. https://doi.org/10.1186/s12958-021-00844-8.

37. Liu Y., Liang S., Yang F. et al. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther. 2020;11(1): 346. https://doi.org/10.1186/s13287-020-01856-8.

38. Li J., Dai Y., Zhu H. et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum Reprod. 2016;31(6):1224–35. https://doi.org/10.1093/humrep/dew058.

39. Zhang Y., Sun X., Li Z. et al. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother. 2024;171:116182. https://doi.org/10.1016/j.biopha.2024.116182.

40. Cariello M., Squilla A., Piacente M. et al. Drug resistance: the role of exosomal miRNA in the microenvironment of hematopoietic tumors. Molecules. 2022;28(1):116. https://doi.org/10.3390/molecules28010116.

41. Zhang H., Li G., Sheng X., Zhang S. Upregulation of miR-33b promotes endometriosis via inhibition of Wnt/β-catenin signaling and ZEB1 expression. Mol Med Rep. 2019;19(3):2144–52. https://doi.org/10.3892/mmr.2019.9870.

42. Dávalos A., Goedeke L., Smibert P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7. https://doi.org/10.1073/pnas.1102281108.

43. Pattanayak B., Garrido-Cano I., Adam-Artigues A. et al. MicroRNA-33b suppresses epithelial-mesenchymal transition repressing the MYC-EZH2 pathway in HER2+ breast carcinoma. Front Oncol. 2020;10:1661. https://doi.org/10.3389/fonc.2020.01661.

44. Wu H.T., Zhong H.T., Li G.W. et al. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J Transl Med. 2020;18(1):51. https://doi.org/10.1186/s12967-02002240-z.

45. Eggers J.C., Martino V., Reinbold R. et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016;32(4):434–45. https://doi.org/10.1016/j.rbmo.2015.12.013.

46. Furuya M., Masuda H., Hara K. et al. ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstet Gynecol Scand. 2017;96;(9):1128–35. https://doi.org/10.1111/aogs.13179.

47. Zhang Y., Chang X., Wu D. et al. Down-regulation of exosomal miR-214-3p tTargeting CCN2 contributes to endometriosis fibrosis and the role of exosomes in the horizontal transfer of miR-2143p. Reprod Sci. 2021;28(3):715–27. https://doi.org/10.1007/s43032-020-00350-z.

48. Mani M., Carrasco D.E., Zhang Y. et al. BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res. 2009;69(19):7577–86. https://doi.org/10.1158/0008-5472.CAN-09-0773.

49. Zhang M., Wang X., Xia X. et al. Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Discov. 2022;8(1):151. https://doi.org/10.1038/s41420-02200941-6.

50. Braza-Boïls A., Marí-Alexandre J., Gilabert J. et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88. https://doi.org/10.1093/humrep/deu019.

51. Zhu H., Cao X.X., Liu J., Hua H. MicroRNA-488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7. J Cell Mol Med. 2019;23(4):2419–30. https://doi.org/ 10.1111/jcmm.14078.

52. Peghaire C., Bats M.L., Sewduth R. et al. Fzd7 (Frizzled-7) Expressed by endothelial cells controls blood vessel formation through Wnt/β-catenin canonical signaling. Arterioscler Thromb Vasc Biol. 2016;36(12):2369–80. https://doi.org/10.1161/ATVBAHA.116.307926.

53. Mai H., Xu H., Lin H. et al. LINC01541 Functions as a ceRNA to modulate the Wnt/β-catenin pathway by decoying miR-506-5p in endometriosis. Reprod Sci. 2021;28(3):665–74. https://doi.org/10.1007/s43032-020-00295-3.

54. Qiao D., Qin X., Yang H. et al. Estradiol mediates the interaction of LINC01541 and miR-429 to promote angiogenesis of G1/G2 endometrioid adenocarcinoma in-vitro: a pilot study. Front Oncol. 2022;12:951573. https://doi.org/10.3389/fonc.2022.951573.

55. Wang Y.Y., Duan H., Wang S. et al. Talin1 induces epithelial-mesenchymal transition to facilitate endometrial cell migration and invasion in adenomyosis under the regulation of microRNA-145-5p. Reprod Sci. 2021;28(5):1523–39. https://doi.org/10.1007/s43032-020-00444-8.


Рецензия

Для цитирования:


Виривская Е.В., Игнатко И.В., Снимщикова И.А., Бахтияров К.Р., Зуева А.С., Капырина Т.Д. Роль Wnt/β-катенинового сигнального пути в патогенезе эндометриоза. Акушерство, Гинекология и Репродукция. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.640

For citation:


Virivskaya E.V., Ignatko I.V., Snimshchikova I.A., Bakhtiyarov K.R., Zueva A.S., Kapyrina T.D. Wnt/β-catenin signaling pathway role in the endometriosis pathogenesis. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.640

Просмотров: 32


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)