Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Molecular genetic markers of breast cancer: current advances in understanding the etiology, prognostic value, and therapeutic opportunities

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.631

Abstract

Introduction. Breast cancer (BC) is the most common oncology pathology that holds a leading place among the causes of cancer death. Early diagnosis is critically important for successful treatment. Current molecular genetic research has revolutionized oncology allowing to classify breast cancer into various subtypes and, thereby, radically changing the approach to therapy.

Aim: to analyze the literature data on up-to-date information regarding the molecular genetic BC markers and the prospects of their use for BC diagnostics and treatment.

Materials and Methods. In accordance with the PRISMA guidelines, a systematic search was conducted in the PubMed/MEDLINE, eLibrary, and Google Scholar databases using Russian and English keywords: «breast cancer», «early breast cancer», «molecular markers of tumor cells», «chemotherapy», «hormone therapy», «estrogen and progesterone receptors», «triple-negative breast cancer», «neoadjuvant chemotherapy», «complete pathological response», «immunohistochemistry». Peer-reviewed publications in Russian or English containing original data on BC molecular diagnostics were included, with total of 39 publications selected for analysis.

Results. High diagnostic and prognostic value was found for mutations in the BRCA1/2, PIK3CA,TP53, CHEK2, PALB2, and ESR1 genes, as well as for the expression of PD-L1, TILs (tumor-infiltrating lymphocytes), and Foxp3+ regulatory T cell levels. Modern technologies such as liquid biopsy, analysis of circulating tumor cells, and circulating tumor DNA allow for real-time tumor molecular profiling. This markedly expands the potential for personalized treatment strategies. HER-2-low subtype and ESR1 mutations require individualized therapeutic approaches.

Conclusion. BC molecular markers have become a cornerstone for accurate diagnosis, risk stratification, and personalized therapy. Despite substantial research advances, the accessibility of molecular diagnostics, standardization of procedures, and integration of innovative technologies into clinical practice remain pressing issues. Systemic support is needed to implement molecular techniques into standard care protocols and ensure their broader application in real-world oncology settings.

About the Authors

M. M. Omarov
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Makhmud M. Omarov

310 Mira Str., Stavropol 355017 



V. V. Trusova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Vladislava V. Trusova

310 Mira Str., Stavropol 355017 



L. M. Agabekyan
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Lusine M. Agabekyan

310 Mira Str., Stavropol 355017 



I. R. Gaziev
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ismail R. Gaziev

310 Mira Str., Stavropol 355017 



Z. M. Alibekova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Zaira M. Alibekova

310 Mira Str., Stavropol 355017 



L. A. Aivazyan
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Luiza A. Aivazyan

310 Mira Str., Stavropol 355017 



E. A. Safarova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ella A. Safarova

310 Mira Str., Stavropol 355017 



A. M. Adzhigulova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Alina M. Adzhigulova

310 Mira Str., Stavropol 355017 



A. A. Darmilova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Azarina A. Darmilova

310 Mira Str., Stavropol 355017 



E. K. Khanmukhometova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elza K. Khanmukhometova

310 Mira Str., Stavropol 355017 



I. R. Vanova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Inna R. Ivanova

310 Mira Str., Stavropol 355017 



V. I. Pigareva
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Valeriya I. Pigareva

310 Mira Str., Stavropol 355017 



References

1. Malignant neoplasms in Russia in 2023 (incidence and mortality). Eds. A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. [Zlokachestvennye novoobrazovaniya v Rossii v 2023 godu (zabolevaemost' i smertnost'). Pod red. A.D. Kaprina, V.V. Starinskogo, A.O.Shahzadovoj]. Moscow: Herzen Moscow Oncology Research Institute − Branch of the National Medical Research Center of Radiology of the Ministry of Health of the Russian Federation, 2024. 276 p. (In Russ.).

2. Kim D.H., Lee K.E. Discovering breast cancer biomarkers candidates through mRNA expression analysis based on The Cancer Genome Atlas Database. J Pers Med. 2022;12(10):1753. https://doi.org/10.3390/jpm12101753.

3. Venetis K., Pepe F., Pescia C. et al. ESR1 mutations in HR+/HER2-metastatic breast cancer: enhancing the accuracy of ctDNA testing. Cancer Treat Rev. 2023:121:102642. https://doi.org/10.1016/j.ctrv.2023.102642.

4. Guerini-Rocco E., Venetis K., Cursano G. et al. Standardized molecular pathology workflow for ctDNA-based ESR1 testing in HR+/HER2- metastatic breast cancer. Review Crit Rev Oncol Hematol. 2024:201:104427. https://doi.org/10.1016/j.critrevonc.2024.104427.

5. Mekhtieva N.I. The modern trends in diagnosis and treatment of primary operable breast cancer. [Sovremennye tendencii v diagnostike i lechenii pervichno operabel'nogo raka molochnoj zhelezy (obzor literatury)]. Opuholi zhenskoj reproduktivnoj sistemy. 2018;14(4):24–34. (In Russ.). https://doi.org/10.17650/1994-4098-2018-14-4-24-34.

6. Tzanikou E., Markou A., Politaki E. et al. PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study. Mol Oncol. 2019;13(12):2515–30. https://doi.org/10.1002/1878-0261.12540.

7. Bonacho T., Rodrigues F., J Liberal J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotech Histochem. 2020;95(2):71–91. https://doi.org/10.1080/10520295.2019.1651901.

8. Ravelli A., Reuben J.M., Lanza F. et al. Breast cancer circulating biomarkers: advantages, drawbacks, and new insights. Tumour Biol. 2015;36(9):6653–65. https://doi.org/10.1007/s13277-015-3944-7.

9. Stergiopoulou D., Georgoulias V., Markou A. et al. Development and validation of a multi-marker liquid bead array assay for the simultaneous detection of PIK3CA and ESR1 hotspot mutations in single circulating tumor cells (CTCs). Heliyon. 2024;10(19):e37873. https://doi.org/10.1016/j.heliyon.2024.e37873.

10. Dieci M.V., Tsvetkova V., Gaia Griguolo G. et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. Eur J Cancer. 2020:136:7–15. https://doi.org/10.1016/j.ejca.2020.05.014.

11. Clinical guidelines – Breast cancer – 2021-2022-2023 (20.01.2023). [Klinicheskie rekomendacii – Rak molochnoj zhelezy – 2021-2022-2023 (20.01.2023). Moscow: Ministerstvo zdravoohraneniya Rossijskoj Federacii, 2021. 94 p. (In Russ.). Available at: https://cr.minzdrav.gov.ru/preview-cr/379_4. [Accessed: 15.01.2025].

12. Loibl S., Poortmans P., Morrow M. et al. Breast cancer. Lancet. 2021;397(10286):1750–69. https://doi.org/10.1016/S0140-6736(20)32381-3.

13. Zikyrahodzhayev A.D., Saribekyan E.K., Sukhotko A.S., Tregubova A.V. Genetically associated breast cancer. Prevention and treatment. [Geneticheski-associirovannyj rak molochnoj zhelezy. Profilaktika i lechenie]. Medicinskaya genetika. 2019;18(10):3–9. (In Russ.). https://doi.org/10.25557/2073-7998.2019.10.3-9.

14. Lin C.-L., Jin X., Ma D. et al. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell. 2024;42(4):701–719.e12. https://doi.org/10.1016/j.ccell.2024.03.006.

15. De Talhouet S., Peron J., Vuilleumier A. et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 2020;10(1):7073. https://doi.org/10.1038/s41598-020-63759-1.

16. Loi S., Drubay D., Adams S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69. https://doi.org/10.1200/JCO.18.01010.

17. André F., Ciruelos E., Rubovszky G. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/NEJMoa1813904.

18. Pohl-Rescigno E., Hauke J, Loibl S. et al. Association of germline variant status with therapy response in high-risk early-stage breast cancer: a secondary analysis of the GeparOcto Randomized Clinical Trial. JAMA Oncol. 2020;6(5):744–8. https://doi.org/10.1001/jamaoncol.2020.0007.

19. Herzog S.K., Fuqua S.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges. Br J Cancer. 2022;126(2):174–86. https://doi.org/10.1038/s41416-021-01564-x.

20. Najim O., Seghers S., Sergoynne L. et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: a systematic review and meta-analysis of randomized and non-randomized trials. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188315. https://doi.org/10.1016/j.bbcan.2019.188315.

21. Tokat U.M., Bilgiç S.N., Aydın E. et al. Elacestrant plus alpelisib in an ESR1 and PIK3CA co-mutated and heavily pretreated metastatic breast cancer: the first case report for combination efficacy and safety. Ther Adv Med Oncol. 2024:16:17588359241297101. https://doi.org/10.1177/17588359241297101.

22. Gelsomino L., Caruso A., Tasan E. et al. Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts. Cell Commun Signal. 2024;22(1):545. https://doi.org/10.1186/s12964-024-01918-x.

23. Wang M.-H., Liu Z.-H., Zhang H.-X. et al. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann Med. 2024;56(1):2424515. https://doi.org/10.1080/07853890.2024.2424515.

24. Angelico G., Broggi G., Tinnirello G. et al. Tumor infiltrating lymphocytes (TILS) and PD-L1 expression in breast cancer: a review of current evidence and prognostic implications from pathologist's perspective. Cancers (Basel). 2023;15(18):4479. https://doi.org/10.3390/cancers15184479.

25. van den Ende N.S., Nguyen A.H., Jager A. et al. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci. 2023;24(3):2969. https://doi.org/10.3390/ijms24032969.

26. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.

27. Barzaman K., Karami J., Zarei Z. et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020:84:106535. https://doi.org/10.1016/j.2020.106535.

28. Grüntkemeier L., Khurana A., Bischoff F.Z. et al. Single HER2-positive tumor cells are detected in initially HER2-negative breast carcinomas using the DEPArray™-HER2-FISH workflow. Breast Cancer. 2022;29(3):487–97. https://doi.org/10.1007/s12282-022-01330-8.

29. Zhang L., Chen W., Liu S. et al. Targeting breast cancer stem cells. Int J Biol Sci. 2023;19(2):552–70. https://doi.org/10.7150/ijbs.76187.

30. Gonzalez-Ericsson P.I., Stovgaard E.S., Sua L.F. et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol. 2020;250(5):667–84. https://doi.org/10.1002/path.5406.

31. Loi S., Michiels S., Adams S. et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol. 2021;32(10):1236–44. https://doi.org/10.1016/j.annonc.2021.07.007.

32. Abdelrahman A.E., Rashed H.E., Toam M. et al. Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol. 2021:51:151676. https://doi.org/10.1016/j.anndiagpath.2020.151676.

33. Tyulyandin S.A., Artamonova E.V., Zhukova L.G. et al. Practical recommendations for the drug treatment of breast cancer. [Prakticheskie rekomendacii po lekarstvennomu lecheniyu raka molochnoj zhelezy]. Zlokachestvennye opuholi. 2022;12(3s2–1):155–197. (In Russ.). https://doi.org/10.18027/2224-5057-2022-12-3s2-155-197.

34. Liu Y. HER2-low breast cancer: insights on pathological testing. Transl Breast Cancer Res. 2023:4:15. https://doi.org/10.21037/tbcr-23-15.

35. Horisawa N., Adachi Y., Takatsuka D. et al. The frequency of low HER2 expression in breast cancer and a comparison of prognosis between patients with HER2-low and HER2-negative breast cancer by HR status. Breast Cancer. 2022;29(2):234–41. https://doi.org/10.1007/s12282-021-01303-3.

36. Denkert C., Lambertini C., Fasching P.A. et al. Biomarker data from the phase III KATHERINE study of adjuvant T-DM1 versus trastuzumab for residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer. Clin Cancer Res. 2023;29(8):1569–81. https://doi.org/10.1158/1078-0432.CCR-22-1989.

37. Takada M., Toi M. Neoadjuvant treatment for HER2-positive breast cancer. Chin Clin Oncol. 2020;9(3):32. https://doi.org/10.21037/cco-20-123.

38. Takano T., Masuda N., Ito M. et al. Long-term outcomes of neoadjuvant trastuzumab emtansine + pertuzumab (T-DM1 + P) and docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP) for HER2-positive primary breast cancer: results of the randomized phase 2 JBCRG20 study (Neo-peaks). Breast Cancer Res Treat. 2024;207(1):33–48. https://doi.org/10.1007/s10549-024-07333-7.

39. Masuda N., Ohtani S., Takano T. et al. A randomized, 3-arm, neoadjuvant, phase 2 study comparing docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP), TCbHP followed by trastuzumab emtansine and pertuzumab (T-DM1+P), and T-DM1+P in HER2-positive primary breast cancer. Breast Cancer Res Treat. 2020;180(1):135–46. https://doi.org/10.1007/s10549-020-05524-6.


Review

For citations:


Omarov M.M., Trusova V.V., Agabekyan L.M., Gaziev I.R., Alibekova Z.M., Aivazyan L.A., Safarova E.A., Adzhigulova A.M., Darmilova A.A., Khanmukhometova E.K., Vanova I.R., Pigareva V.I. Molecular genetic markers of breast cancer: current advances in understanding the etiology, prognostic value, and therapeutic opportunities. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.631

Views: 42


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)