Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Fetal systemic inflammatory response syndrome, thromboinflammation and neonatal septic shock: pathogenesis, diagnostics and treatment

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.619

Abstract

The article is dedicated to outlining the pathogenic mechanisms, diagnostic criteria, and treatment of systemic inflammatory response syndrome (SIRS), thromboinflammation, and septic shock in fetuses and newborns. SIRS is a body hyperreaction to external stress involving biologically active molecules, cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin (IL) IL-1 so that a balance between inflammation and adaptive mechanisms becomes altered. Special attention is paid to fetal inflammatory response syndrome (FIRS). Here, we describe the broad impact of FIRS targeting vital organs and systems. The challenges in diagnosing and treating septic shock in newborns are discussed, highlighting a crosstalk between inflammation and hemostasis. Despite progress in understanding the molecular mechanisms underlying FIRS and sepsis, some obstacles in developing effective therapeutic strategies remain. This underscores a need for conducting targeted research to reduce morbidity and mortality related to thromboinflammation and septic shock.

About the Authors

V. O. Bitsadze
Sechenov University
Russian Federation

Victoria O. Bitsadze, MD, Dr Sci Med, Prof., Professor RAS

Scopus Author ID: 6506003478

WoS ResearcherID: F-8409-2017

8 bldg. 2, Trubetskaya Str., Moscow 119048



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva, MD, Dr Sci Med, Prof.

Scopus Author ID: 57194547147

WoS ResearcherID: F-8384-2017

8 bldg. 2, Trubetskaya Str., Moscow 119048



M. V. Tretyakova
Sechenov University
Russian Federation

Maria V. Tretyakova, MD, PhD

8 bldg. 2, Trubetskaya Str., Moscow 119048



N. A. Makatsariya
Sechenov University
Russian Federation

Nataliya A. Makatsariya, MD, PhD

WoS ResearcherID: F-8406-2017

8 bldg. 2, Trubetskaya Str., Moscow 119048



R. I. Gabidullina
Kazan State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Rushania I. Gabidullina, MD, Dr Sci Med, Prof.

Scopus Author ID: 57215670415

49 Butlerov Str., Kazan



A. V. Mostovoi
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation; Yaroslavl State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Aleksei V. Mostovoi, MD, PhD.

Scopus Author ID: 57201723894

Wos ResearcherID: AAR-7908-2021

2/44 Salyama Adilya Str., Moscow 123423

2/1 bldg. 1, Barrikadnaya Str., Moscow 123993

5 Revolutsionnaya Str., Yaroslavl 150000



A. L. Karpova
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation; Yaroslavl State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Anna L. Karpova, MD, PhD

2/44 Salyama Adilya Str., Moscow 123423

2/1 bldg. 1, Barrikadnaya Str., Moscow 123993

5 Revolutsionnaya Str., Yaroslavl 150000



A. E. Voynovskiy
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department
Russian Federation

Alexander Е. Voynovskiy, MD, Dr Sci Med, Prof.

WoS ResearcherID: S-6385-2016

2/44 Salyama Adilya Str., Moscow 123423



M. G. Novosartyan
Clinic of IVF and Reproduction «Embryo»
Russian Federation

Margarita G. Novosartyan, MD, PhD

5 General I.L. Shifrin Str., Krasnodar 5350089



A. V. Lazarchuk
Sechenov University
Russian Federation

Arina V. Lazarchuk, MD

8 bldg. 2, Trubetskaya Str., Moscow 119048



A. R. Khisamieva
Sechenov University
Russian Federation

Azaliia R. Khisamieva

8 bldg. 2, Trubetskaya Str., Moscow 119048



A. Yu. Tatarintseva
Sechenov University
Russian Federation

Alena Yu. Tatarintseva

8 bldg. 2, Trubetskaya Str., Moscow 119048



A. V. Vorobev
Sechenov University
Russian Federation

Alexander V. Vorobev, MD, PhD

Scopus Author ID: 57191966265

Wos ResearcherID: F-8804-2017

8 bldg. 2, Trubetskaya Str., Moscow 119048



K. V. Agasyan
Sechenov University
Russian Federation

Karine V. Agasyan

8 bldg. 2, Trubetskaya Str., Moscow 119048



D. L. Kapanadze
Center for Pregnancy Pathology and Hemostasis
Georgia

Daredzhan L. Kapanadze, MD, PhD

78 Uznadze Str., Tbilisi 0179



M. S. Zainulina
Professor Snegirev Maternity Hospital No. 6; Saint Petersburg Medical and Social Institute
Russian Federation

Marina S. Zainulina, MD, Dr Sci Med, Prof.

Scopus Author ID: 37076359000

WoS ResearcherID: B-5746-2018

5 Mayakovskogo Str., Saint Petersburg 192014

72 lit. A, Kondratievsky Prospekt, Saint Petersburg 195271



V. N. Serov
Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Russian Federation

Vladimir N. Serov, MD, Dr Sci Med, Prof., Academician of RAS

4 Academika Oparina Str., Moscow 117997



D. V. Blinov
Institute for Preventive and Social Medicine; Moscow Haass Medical – Social Institute; Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology, Federal Medical-Biological Agency
Russian Federation

Dmitry V. Blinov, MD, PhD, MBA

Scopus Author ID: 6701744871

WoS ResearcherID: E-8906-2017

11–13/1 Lyalin Pereulok, Moscow 101000

5 bldg. 1–1a, 2-ya Brestskaya Str., Moscow 123056

6 bldg. 1, Rodnikovaya Str., Village Goluboe, Moscow region 141551



Jean-Christophe Gris
Sechenov University; University of Montpellier
France

Jean-Christophe Gris, MD, Dr Sci Med, Prof.

Scopus Author ID: 7005114260

WoS ResearcherID: AAA-2923-2019

8 bldg. 2, Trubetskaya Str., Moscow 119048

163 Rue Auguste Broussonnet, Montpellier 34090



P. Van Dreden
Clinical Research Department, Diagnostica Stago Gennevilliers; Medicine Sorbonne University
France

Patrick Van Dreden, MD, Dr Sci Med, Prof.

Scopus Author ID: 55915955300

12 Rue de l’École de Médecine, Paris 75006



I. Elalamy
Sechenov University; Medicine Sorbonne University; Hospital Tenon
France

Ismail Elalamy, MD, Dr Sci Med, Prof.

Scopus Author ID: 7003652413

WoS ResearcherID: AAC-9695-2019

8 bldg. 2, Trubetskaya Str., Moscow 119048

12 Rue de l’École de Médecine, Paris 75006

4 Rue de la Chine, Paris 75020



G. Gerotziafas
Sechenov University; Medicine Sorbonne University; Hospital Tenon
France

Grigoriоs Gerotziafas, MD, Dr Sci Med, Prof.

8 bldg. 2, Trubetskaya Str., Moscow 119048

12 Rue de l’École de Médecine, Paris 75006

4 Rue de la Chine, Paris 75020



A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya, MD, Dr Sci Med, Prof., Academician of RAS

Scopus Author ID: 57222220144

WoS ResearcherID: M-5660-2016

8 bldg. 2, Trubetskaya Str., Moscow 119048



References

1. Linnikov V.I., Linnikov S.V., Makatsariya N.A. Sanarelli and Schwartzman, a historical background. [Sanarelli i Shvarcman, istoricheskaya spravka]. Obstetrics, Gynecology and Reproduction. 2022;16(3):324–7. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.320.

2. Chakraborty R.K., Burns B. Systemic inflammatory response syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2025 Jan.

3. Wang Y., Dong H., Dong T. et al. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem. 2024;479(5):1149–64. https://doi.org/10.1007/s11010-023-04785-1.

4. Beznoshchenko G.B. Systemic inflammatory response syndrome in an obstetric clinic: resolved and unresolved problems. [Sindrom sistemnogo vospalitel'nogo otveta v akusherskoj klinike: reshennye voprosy i nereshennye problemy]. Rossijskij vestnik akushera-ginekologa. 2018;18(4):6–10. (In Russ.). https://doi.org/10.17116/rosakush20181846.

5. Sikora J.P., Karawani J., Sobczak J. Neutrophils and the systemic inflammatory response syndrome (SIRS). Int J Mol Sci. 2023;24(17):13469. https://doi.org/10.3390/ijms241713469.

6. De Felice C., De Capua B., Costantini D. et al. Recurrent otitis media with effusion in preterm infants with histologic chorioamnionitis – a 3 years follow-up study. Early Hum Dev. 2008;84(10):667–71. https://doi.org/10.1016/j.earlhumdev.2008.04.008.

7. Karrow N.A. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav Immun. 2006;20(2):144–58. https://doi.org/10.1016/j.bbi.2005.05.003.

8. Para R., Romero R., Miller D. et al. The distinct immune nature of the fetal inflammatory response syndrome type I and type II. Immunohorizons. 2021;5(9):735–51. https://doi.org/10.4049/immunohorizons.2100047.

9. Glavina-Durdov M., Springer O., Capkun V. et al. The grade of acute thymus involution in neonates correlates with the duration of acute illness and with the percentage of lymphocytes in peripheral blood smear. Pathological study. Biol Neonate. 2003;83(4):229–34. https://doi.org/10.1159/000069481.

10. Stra??k Z., Berka I., ?irc J. et al. Role of umbilical interleukin-6, procalcitonin and C-reactive protein measurement in the diagnosis of fetal inflammatory response syndrome. Ceska Gynekol. 2021;86(2):80–5. https://doi.org/10.48095/cccg202180.

11. Persson G., J?rgensen N., Nilsson L.L. et al. A role for both HLA-F and HLA-G in reproduction and during pregnancy? Hum Immunol. 2020;81(4):127–33. https://doi.org/10.1016/j.humimm.2019.09.006.

12. Nomiyama M., Nakagawa T., Yamasaki F. et al. Contribution of fetal inflammatory response syndrome (FIRS) with or without maternal-fetal inflammation in the placenta to increased risk of respiratory and other complications in preterm neonates. Biomedicines. 2023;11(2):611. https://doi.org/10.3390/biomedicines11020611.

13. Romero R., Savasan Z.A., Chaiworapongsa T. et al. The hematologic profile of the fetus with systemic inflammatory response syndrome. J Perinat Med. 2011;40(1):19–32. https://doi.org/10.1515/JPM.2011.100.

14. Ead J.K., Armstrong D.G. Granulocyte-macrophage colony-stimulating factor: conductor of the wound healing orchestra? Int Wound J. 2023;20(4):1229–34. https://doi.org/10.1111/iwj.13919.

15. Zurochka A.V., Zurochka V.A., Dobrynina M.A., Gritsenko V.A. Immunobiological properties of granulocytemacrophage colony-stimulating factor and synthetic peptides of his active center. [Immunobiologicheskie svojstva granulocitarno-makrofagal'nogo koloniestimuliruyushchego faktora i sinteticheskih peptidov ego aktivnogo centra]. Medicinskaya immunologiya. 2021;23(5):1031–54. (In Russ.) https://doi.org/10.15789/1563-0625-IPO-2216.

16. Chaiworapongsa T., Romero R., Berry S.M. et al. The role of granulocyte colony-stimulating factor in the neutrophilia observed in the fetal inflammatory response syndrome. J Perinat Med. 2011;39(6):653–66. https://doi.org/10.1515/jpm.2011.072.

17. Leikin E., Garry D., Visintainer P. et al. Correlation of neonatal nucleated red blood cell counts in preterm infants with histologic chorioamnionitis. Am J Obstet Gynecol. 1997;177(1):27–30. https://doi.org/10.1016/s0002-9378(97)70433-2.

18. Mandel D., Oron T., Mimouni G.S. et al. The effect of prolonged rupture of membranes on circulating neonatal nucleated red blood cells. J Perinatol. 2005;25(11):690–3. https://doi.org/10.1038/sj.jp.7211389.

19. Romero R., Soto E., Berry S.M. et al. Blood pH and gases in fetuses in preterm labor with and without systemic inflammatory response syndrome. J Matern Fetal Neonatal Med. 2012;25(7):1160–70. https://doi.org/10.3109/14767058.2011.629247.

20. Zaharie G.C., Drugan T., Crivii C. et al. Postpartum assessment of fetal inflammatory response syndrome in a preterm population with premature rupture of membranes: a Romanian study. Exp Ther Med. 2021;22(6):1427. https://doi.org/10.3892/etm.2021.10862.

21. Kallapur S.G., Willet K.E., Jobe A.H. et al. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L527–36. https://doi.org/10.1152/ajplung.2001.280.3.L527.

22. Yoon B.H., Romero R., Kim K.S. et al. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1999;181(4):773–9. https://doi.org/10.1016/s0002-9378(99)70299-1.

23. Sarno L., Corte L. D., Saccone G. et al. Histological chorioamnionitis and risk of pulmonary complications in preterm births: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2021;34(22):3803–12. https://doi.org/10.1080/14767058.2019.1689945.

24. Wu J., Wang Y., Zhao A., Wang Z. Lung ultrasound for the diagnosis of neonatal respiratory distress syndrome: a meta-analysis. Ultrasound Q. 2020;36(2):102–10. https://doi.org/10.1097/RUQ.0000000000000490.

25. Dessardo N.S., Dessardo S., Musta? E. et al. Chronic lung disease of prematurity and early childhood wheezing: is foetal inflammatory response syndrome to blame? Early Hum Dev. 2014;90(9):493–9. https://doi.org/10.1016/j.earlhumdev.2014.07.002.

26. Yap V., Perlman J.M. Mechanisms of brain injury in newborn infants associated with the fetal inflammatory response syndrome. Semin Fetal Neonatal Med. 2020;25(4):101110. https://doi.org/10.1016/j.siny.2020.101110.

27. Muraskas J.K., Kelly A.F., Nash M.S. et al. The role of fetal inflammatory response syndrome and fetal anemia in nonpreventable term neonatal encephalopathy. J Perinatol. 2016;36(5):362–5. https://doi.org/10.1038/jp.2015.214.

28. Yoon B.H., Romero R., Kim C.J. et al. High expression of tumor necrosis factor-? and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol. 1997;177(2):406–11. https://doi.org/10.1016/s0002-9378(97)70206-0.

29. Kadhim H., Tabarki B., Verellen G. et al. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology. 2001;56(10):1278–84. https://doi.org/10.1212/wnl.56.10.1278.

30. Stolp H.B., Dziegielewska K.M., Ek C.J. et al. Breakdown of the blood-brain barrier to proteins in white matter of the developing brain following systemic inflammation. Cell Tissue Res. 2005;320(3):369–78. https://doi.org/10.1007/s00441-005-1088-6.

31. Aleksandrov A.G., Blinov D.V. Blood-brain barrier breach after acute cerebral hypoxia in infants. [Proryv gematoencefalicheskogo bar'era posle ostroj gipoksii golovnogo mozga u detej]. Journal of Medical Rehabilitation. 2024;2(1):107–14. (In Russ.). https://doi.org/10.17749/2949-5873/rehabil.2024.13.

32. Aleksandrov A.G., Petrenko D.A. Promising biomarkers of blood-brain barrier permeability impairment in rehabilitation of infants with perinatal hypoxic-ischemic central nervous system injury. [Perspektivnye biomarkery narusheniya pronicaemosti gematoencefalicheskogo bar'era v reabilitacii detej s perinatal'nym gipoksicheskii-shemicheskim porazheniem central'noj nervnoj sistemy]. Journal of Medical Rehabilitation. 2024;2(2):207–15. (In Russ.). https://doi.org/10.17749/2949-5873/rehabil.2024.9.

33. Zhang Z., Jyoti A., Balakrishnan B. et al. Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure. Neurobiol Dis. 2018;111:153–62. https://doi.org/10.1016/j.nbd.2017.12.013.

34. Giovannini E., Bonasoni M.P., Pascali J.P. et al. Infection induced fetal inflammatory response syndrome (FIRS): state-of- the-art and medico-legal implications – a narrative review. Microorganisms. 2023;11(4):1010. https://doi.org/10.3390/microorganisms11041010.

35. Goncalves L.F., Cornejo P., Towbin R. Neuroimaging findings associated with the fetal inflammatory response syndrome. Semin Fetal Neonatal Med. 2020;25(4):101143. https://doi.org/10.1016/j.siny.2020.101143.

36. Boog G. Cerebral palsy and perinatal asphyxia (I – diagnosis). Gynecol Obstet Fertil. 2010;38(4):261–77. (In French). https://doi.org/10.1016/j.gyobfe.2010.02.009.

37. Kozhanova T.V., Zhilina S.S., Meshcheryakova T.I. et al. SPTAN1-associated developmental and epileptic encephalopathy. [SPTAN1-associirovannaya encefalopatiya razvitiya i epilepticheskaya encefalopatiya]. Epilepsy and paroxysmal conditions. 2023;15(3):246–59. (In Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2023.150.

38. Malov А.G., Kalashnikova Т.P., Vdovina N.А. Clinical features of developmental and epileptic encephalopathy caused by KCNQ2 gene mutation. [Klinicheskie osobennosti evolyucionnoj i epilepticheskoj encefalopatii, vyzvannoj mutaciej v gene KCNQ2]. Epilepsy and paroxysmal conditions. 2023;15(4):354–60. (In Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2023.171.

39. Abusueva B.A., Shanavazova M.D., Askevova М.A. et al. Atypical course of severe myoclonic epilepsy of infancy (Dravet syndrome). [Sluchaj atipichnogo techeniya tyazheloj mioklonicheskoj epilepsii mladenchestva (sindroma Drave)]. Epilepsy and paroxysmal conditions. 2024;16(2):130–6. (In Russ.). https://doi.org/10.17749/2077-8333/epi.par.con.2024.180.

40. Song J.S., Woo S.J., Park K.H. et al. Association of inflammatory and angiogenic biomarkers in maternal plasma with retinopathy of prematurity in preterm infants. Eye (Lond). 2023;37(9):1802–9. https://doi.org/10.1038/s41433-022-02234-9.

41. Park Y.J., Woo S.J., Kim Y.M. et al. Immune and inflammatory proteins in cord blood as predictive biomarkers of retinopathy of prematurity in preterm infants. Invest Ophthalmol Vis Sci. 2019;60(12):3813–20. https://doi.org/10.1167/iovs.19-27258.

42. Gibson B., Goodfriend E., Zhong Y., Melhem N.M. Fetal inflammatory response and risk for psychiatric disorders. Transl Psychiatry. 2023;13(1):224. https://doi.org/10.1038/s41398-023-02505-3.

43. Yoon B.H., Kim Y.A., Romero R. et al. Association of oligohydramnios in women with preterm premature rupture of membranes with an inflammatory response in fetal, amniotic, and maternal compartments. Am J Obstet Gynecol. 1999;181(4):784–788. https://doi.org/10.1016/s0002-9378(99)70301-7.

44. Lee S.E., Romero R., Lee S.M., Yoon B.H. Amniotic fluid volume in intra-amniotic inflammation with and without culture-proven amniotic fluid infection in preterm premature rupture of membranes. J Perinat Med. 2010;38(1):39–44. https://doi.org/10.1515/jpm.2009.123.

45. Azpurua H., Dulay A.T., Buhimschi I.A. et al. Fetal renal artery impedance as assessed by Doppler ultrasound in pregnancies complicated by intraamniotic inflammation and preterm birth. Am J Obstet Gynecol. 2009;200(2):203.e1–11. https://doi.org/10.1016/j.ajog.2008.11.001.

46. Galinsky R., Moss T.J.M., Gubhaju L. et al. Effect of intra-amniotic lipopolysaccharide on nephron number in preterm fetal sheep. Am J Physiol Renal Physiol. 2011;301(2):F280–5. https://doi.org/10.1152/ajprenal.00066.2011.

47. Stantsidou A., Pagonopoulou O., Deftereou T. Effects of chorioamnionitis in fetal renal glomeruli. Hippokratia. 2021;25(2):98.

48. Muk T., Jiang P.-P., Stensballe A. et al. Prenatal endotoxin exposure induces fetal and neonatal renal inflammation via innate and Th1 immune activation in preterm pigs. Front Immunol. 2020;11:565484. https://doi.org/10.3389/fimmu.2020.565484.

49. Kuypers E., Wolfs T.G.A.M., Collins J.J.P. et al. Intraamniotic lipopolysaccharide exposure changes cell populations and structure of the ovine fetal thymus. Reprod Sci. 2013;20(8):946–56. https://doi.org/10.1177/1933719112472742.

50. Luciano A.A., Yu H., Jackson L.W. et al. Preterm labor and chorioamnionitis are associated with neonatal T cell activation. PLoS One. 2011;6(2):e16698. https://doi.org/10.1371/journal.pone.0016698.

51. Melville J.M., Bischof R.J., Meeusen E.N. et al. Changes in fetal thymic immune cell populations in a sheep model of intrauterine inflammation. Reprod Sci. 2012;19(7):740–7. https://doi.org/10.1177/1933719111432873.

52. Kramer B.W., Moss T.J., Willet K.E. et al. Dose and time response after intraamniotic endotoxin in preterm lambs. Am J Respir Crit Care Med. 2001;164(6):982–8. https://doi.org/10.1164/ajrccm.164.6.2103061.

53. Kuypers E., Willems M.G.M., Jellema R.K. et al. Responses of the spleen to intraamniotic lipopolysaccharide exposure in fetal sheep. Pediatr Res. 2015;77(1–1):29–35. https://doi.org/10.1038/pr.2014.152.

54. Musilova I., Kacerovsky M., Hornychova H. et al. Pulsation of the fetal splenic vein – a potential ultrasound marker of histological chorioamnionitis and funisitis in women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2012;91(9):1119–23. https://doi.org/10.1111/j.1600-0412.2012.01450.x.

55. Yan X., Managlia E., Tan X.-D., De Plaen I.G. Prenatal inflammation impairs intestinal microvascular development through a TNF-dependent mechanism and predisposes newborn mice to necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2019;31(1)7:G57–G66. https://doi.org/10.1152/ajpgi.00332.2018.

56. Razak A., Malhotra A. Fetal inflammatory response spectrum: mapping its impact on severity of necrotising enterocolitis. Pediatr Res. 2024;95:1179–80. https://doi.org/10.1038/s41390-023-02973-9.

57. Bieghs V., Vlassaks E., Custers A. et al. Chorioamnionitis induced hepatic inflammation and disturbed lipid metabolism in fetal sheep. Pediatr Res. 2010;68(6):466–72. https://doi.org/10.1203/PDR.0b013e3181f70eeb.

58. Heymans C., den Dulk M., Lenaerts K. et al. Chorioamnionitis induces hepatic inflammation and time-dependent changes of the enterohepatic circulation in the ovine fetus. Sci Rep. 2021;11(1):10331. https://doi.org/10.1038/s41598-021-89542-4.

59. Sergeeva V.A., Shabalov N.P., Aleksandrovich Yu.S., Nesterenko S.N. Does the fetal inflammatory response syndrome determinate complicated early neonatal period? [Predopredelyaet li fetal'nyj vospalitel'nyj otvet oslozhnyonnoe techenie rannego neonatal'nogo perioda?] Sibirskij medicinskij zhurnal. 2010;(4):75–80. (In Russ.).

60. Watterberg K.L., Demers L.M., Scott S.M., Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics. 1996;97(2):210–5.

61. Volpe J.J. Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J Pediatr. 2008;153(2):160–3. https://doi.org/10.1016/j.jpeds.2008.04.057.

62. Eloundou S.N., Lee J., Wu D. et al. Placental malperfusion in response to intrauterine inflammation and its connection to fetal sequelae. PLoS One. 2019;14(4):e0214951. https://doi.org/10.1371/journal.pone.0214951.

63. Luciano A.A., Arbona-Ramirez I.M., Ruiz R. et al. Alterations in regulatory T cell subpopulations seen in preterm infants. PLoS One. 2014;9(5):e95867. https://doi.org/10.1371/journal.pone.0095867.

64. Karpova A.L., Mostovoi A.V., Dudkina E.А. et al. Early neonatal sepsis in COVID-19 era. [Rannij neonatal'nyj sepsis v epohu COVID-19]. Obstetrics, Gynecology and Reproduction. 2023;17(3):284–98. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.389.

65. Bayalieva A.Zh., Davydova V.R. Septic shock in obstetrics: the role of efferent techniques for endotoxin removal in Gram-negative sepsis. [Septicheskij shok v akusherstve: rol' efferentnyh metodik v udalenii endotoksina pri gramotricatel'nom sepsise]. Obstetrics, Gynecology and Reproduction. 2024;18(4):504–13. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.509.

66. Muraskas J., Astrug L., Amin S. FIRS: neonatal considerations. Semin Fetal Neonatal Med. 2020;25(4):101142. https://doi.org/10.1016/j.siny.2020.101142.

67. Agyeman P.K.A., Schlapbach L.J., Giannoni E. et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. 2017;1(2):124–33. https://doi.org/10.1016/S2352-4642(17)30010-X.

68. Wynn J.L., Wong H.R. Pathophysiology and treatment of septic shock in neonates. Clin Perinatol. 2010;37(2):439–79. https://doi.org/10.1016/j.clp.2010.04.002.

69. Samsygina G.A. Sepsis and septic shock in newborns. [Sepsis i septicheskij shok u novorozhdennyh detej]. Pediatriya. Zhurnal imeni G.N. Speranskogo. 2009;87(1):120–7. (In Russ.).

70. Spaggiari V., Passini E., Crestani S. et al. Neonatal septic shock, a focus on first line interventions. Acta Biomed. 2022;93(3):e2022141. https://doi.org/10.23750/abm.v93i3.12577.

71. Schorr C.A., Zanotti S., Dellinger R.P. Severe sepsis and septic shock. Virulence. 2014;5(1):190–9. https://doi.org/10.4161/viru.27409.

72. de C?ssia Silveira R., Giacomini C., Procianoy R.S. Neonatal sepsis and septic shock: concepts update and review. Rev Bras Ter Intensiva. 2010;22(3):280–90. (In English, Portuguese).

73. Khizroeva J., Makatsariya A., Vorobev A. et al. The hemostatic system in newborns and the risk of neonatal thrombosis. Int J Mol Sci. 2023;24(18):13864. https://doi.org/10.3390/ijms241813864.

74. Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998–2005.

75. Wiedmeier S.E., Henry E., Sola-Visner M.C., Christensen et al. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29(2):130–6. https://doi.org/10.1038/jp.2008.141.

76. Bitsadze V.O., Sukontseva T.A., Akinshina S.V. et al. Septic shock. [Septicheskij shok]. Obstetrics, Gynecology and Reproduction. 2020;14(3):314–26. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.169.

77. Maltseva L.A., Bazilenko D.V. Pathogenesis of severe sepsis and septic shock: analysis of modern concepts. [Patogenez tyazhelogo sepsisa i septicheskogo shoka: analiz sovremennyh koncepcij]. Medicina neotlozhnyh sostoyanij. 2015;(7):35–40. (In Russ.).

78. Bitsadze V.O., Khizroeva J.Kh., Makatsariya D.A. et al. COVID-19, septic shock and disseminated intravascular coagulation syndrome. Part 1. [COVID-19, septicheskij shok i sindrom disseminirovannogo vnutrisosudistogo svertyvaniya krovi. Chast' 1]. Vestnik RAMN. 2020;75(2):118–28. (In Russ.). https://doi.org/10.15690/vramn1335.

79. Levi M., van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44. https://doi.org/10.1016/j.thromres.2016.11.007.

80. Green J., Doughty L., Kaplan S.S. et al. The tissue factor and plasminogen activator inhibitor type-1 response in pediatric sepsis-induced multiple organ failure. Thromb Haemost. 2002;87(2):218–23.

81. Dempfle C.-E. The TAFI system. The new role of fibrinolysis. Hamostaseologie. 2007;27(4):278–81. (In German).

82. Stief T.W., Ijagha O., Weiste B. et al. Analysis of hemostasis alterations in sepsis. Blood Coagul Fibrinolysis. 2007;18(2):179–86. https://doi.org/10.1097/MBC.0b013e328040bf9a.

83. Gando S. Role of fibrinolysis in sepsis. Semin Thromb Hemost. 2013;39(4):392–9. https://doi.org/10.1055/s-0033-1334140.

84. Willemse J.L., Heylen E., Nesheim M.E., Hendriks D.F. Carboxypeptidase U (TAFIa): a new drug target for fibrinolytic therapy? J Thromb Haemost. 2009;7(12):1962–71. https://doi.org/10.1111/j.1538-7836.2009.03596.x.

85. Emonts M., De bruijne E.L.E., Guimar?es A.H.C. et al. Thrombin activatable fibrinolysis inhibitor is associated with severity and outcome of severe meningococcal infection in children. J Thromb Haemost. 2008;6(2):268–76. https://doi.org/10.1111/j.1538-7836.2008.02841.x.

86. Prodeus A.P., Ustinova M.V., Korsunskiy A.A., Goncharov A.G. New aspects of the pathogenesis of sepsis and septic shock in children. The complement system as a target for an effective therapy. [Novye aspekty patogeneza sepsisa i septicheskogo shoka u detej. Sistema komplementa kak mishen' dlya effektivnoj terapii]. Infekciya i immunitet. 2018;8(1):19–24. (In Russ.). https://doi.org/10.15789/2220-7619-2018-1-19-24.

87. Hazelzet J.A., de Groot R., van Mierlo G. et al Complement activation in relation to capillary leakage in children with septic shock and purpura. Infect Immun. 1998;66(11):5350–6. https://doi.org/10.1128/IAI.66.11.5350-5356.1998.

88. Kelwick R., Desanlis I., Wheeler G.N., Edwards D.R. The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol. 2015;16(1):113. https://doi.org/10.1186/s13059-015-0676-3.

89. Levi M., Scully M., Singer M. The role of ADAMTS-13 in the coagulopathy of sepsis. J Thromb Haemost. 2018;16(4):646–51. https://doi.org/10.1111/jth.13953.

90. Levi M., Opal S.M. Coagulation abnormalities in critically ill patients. Crit Care. 2006;10(4):222. https://doi.org/10.1186/cc4975.

91. Pillai V.G., Bao J., Zander C.B. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128(1):110–9. https://doi.org/10.1182/blood-2015-12-688747.

92. Chen J., Chung D.W. Inflammation, von Willebrand factor, and ADAMTS13. Blood. 2018;132(2):141–7. https://doi.org/10.1182/blood-2018-02-769000.

93. Peigne V., Azoulay E., Coquet I. et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit Care. 2013;17(6):R273. https://doi.org/10.1186/cc13115.

94. Habe K., Wada H., Ito-Habe N. et al. Plasma ADAMTS13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb Res. 2012;129(5):598–602. https://doi.org/10.1016/j.thromres.2011.10.011.

95. Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(5):528–34. https://doi.org/10.1182/blood-2005-03-1087.

96. Schwameis M., Sch?rgenhofer C., Assinger A. et al. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(4):708–18. https://doi.org/10.1160/TH14-09-0731.

97. Emmer B.T., Ginsburg D., Desch K.C. VWF and ADAMTS13: too much or too little of a good thing? Arterioscler Thromb Vasc Biol. 2016;36(12):2281–2. https://doi.org/10.1161/ATVBAHA.116.308531.

98. Sonneveld M.A.H., Franco O.H., Ikram M.A. et al. Von Willebrand factor, ADAMTS13, and the risk of mortality: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 2016;36(12):2446–51. https://doi.org/10.1161/ATVBAHA.116.308225.

99. Papadogeorgou P., Boutsikou T., Boutsikou M. et al. A global assessment of coagulation profile and a novel insight into Adamts-13 implication in neonatal sepsis. Biology. 2023;12(10):1281. https://doi.org/10.3390/biology12101281.

100. Kansas G.S. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259–87.

101. Martinod K., Deppermann C. Immunothrombosis and thromboinflammation in host defense and disease. Platelets. 2021;32(3):314–24. https://doi.org/10.1080/09537104.2020.1817360.

102. Rossaint J., Margraf A., Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol. 2018;9:2712. https://doi.org/10.3389/fimmu.2018.02712

103. Iba T., Levy J.H. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 2018;16(2):231–41. https://doi.org/10.1111/jth.13911.

104. Finkelstein Y., Shenkman B., Sirota L. et al. Whole blood platelet deposition on extracellular matrix under flow conditions in preterm neonatal sepsis. Eur J Pediatr. 2002;161(5):270–4. https://doi.org/10.1007/s00431-002-0938-4.

105. Sadeghi K., Berger A., Langgartner M. et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis. 2007;195(2):296–302. https://doi.org/10.1086/509892.

106. Sitaru A.-G., Speer C.P., Holzhauer S. et al. Chorioamnionitis is associated with increased CD40L expression on cord blood platelets. Thromb Haemost. 2005;94(6):1219–23. https://doi.org/10.1160/TH05-02-0127.

107. Aoui C., Prigent A., Sut C. et al. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int J Mol Sci. 2014;15(12):22342–64. https://doi.org/10.3390/ijms151222342.

108. Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. The concept of thromboinflammation underlying thrombotic complications, tumor progression and metastasis in gynecological cancer patients. [Koncepciya trombovospaleniya kak osnovy tromboticheskih oslozhnenij, progressii opuholi i metastazirovaniya u onkoginekologicheskih bol'nyh]. Obstetrics, Gynecology and Reproduction. 2024;18(4):450–63. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.542.

109. Slukhanchuk E.V., Bitsadze V.O., Solopova A.G. et al. Neutrophil extracellular traps as markers of thromboinflammation in the pathogenesis of female genital tract and breast malignant neoplasms. [Vnekletochnye lovushki nejtrofilov kak markery trombovospaleniya v patogeneze zlokachestvennyh novoobrazovanij zhenskih polovyh organov i molochnoj zhelezy]. Obstetrics, Gynecology and Reproduction. 2022;16(4):426–37. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.335.

110. Aslanova Z.D., Khizroeva J.Kh., Solopova A.G. et al. Clinical significance of determining neutrophil extracellular traps in women with oncogynecological neoplasms. [Klinicheskoe znachenie opredeleniya vnekletochnyh lovushek nejtrofilov u zhenshchin s onkoginekologicheskimi zabolevaniyami]. Obstetrics, Gynecology and Reproduction. 2023;17(6):751–68. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.447.

111. Makatsariya A.D. COVID-19 and systemic thrombotic syndromes. [COVID-19 i sistemnye tromboticheskie sindromy]. Obstetrics, Gynecology and Reproduction. 2024;18(6):908–18. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.590.

112. Slukhanchuk E.V., Bitsadze V.O., Solopova A.G. et al. Neutrophil extracellular traps-associated markers in malignant neoplasms of the female reproductive system after surgical treatment and adjuvant chemotherapy. [Markery vnekletochnyh lovushek nejtrofilov u zhenshchin so zlokachestvennymi novoobrazovaniyami reproduktivnoj sistemy, poluchavshih hirurgicheskoe lechenie i ad"yuvantnuyu terapiyu]. Obstetrics, Gynecology and Reproduction. 2023;17(4):420–32. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.432.

113. Slukhanchuk E.V., Bitsadze V.O., Solopova A.G. et al. An impact of neutrophil extracellular traps to the prothrombotic state and tumor progression in gynecological cancer patients. [Vklad vnekletochnyh lovushek nejtrofilov v protromboticheskoe sostoyanie i progressiyu opuholi u onkoginekologicheskih pacientok]. Obstetrics, Gynecology and Reproduction. 2023;17(1):53–64. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.385.

114. Andryukov B.G., Bogdanova V.D., Lyapun I.N. Phenotypic heterogeneity of neutrophils: new antimicrobic characteristics and diagnostic technologies. [Fenotipicheskaya geterogennost' nejtrofilov: novye antimikrobnye harakteristiki i diagnosticheskie tekhnologii]. Gematologiya i transfuziologiya. 2019;64(2):211–21. (In Russ.). https://doi.org/10.35754/0234-5730-2019-64-2-211-221.

115. Kaplan M.J., Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–95. https://doi.org/10.4049/jimmunol.1201719.

116. Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.

117. Hoppenbrouwers T., Boeddha N.P., Ekinci E. et al. Neutrophil extracellular traps in children with meningococcal sepsis. Pediatr Crit Care Med. 2018;19(6):e286–e291. https://doi.org/10.1097/PCC.0000000000001496.

118. McDonald B., Davis R.P., Kim S.-J. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67. https://doi.org/10.1182/blood-2016-09-741298.

119. Fatmi A., Saadi W., Beltr?n-Garc?a J. et al. The endothelial glycocalyx and neonatal sepsis. Int J Mol Sci. 2022;24(1):364. https://doi.org/10.3390/ijms24010364.

120. Dreschers S., Platen C., Ludwig A. et al. Metalloproteinases TACE and MMP-9 differentially regulate death factors on adult and neonatal monocytes after infection with Escherichia coli. Int J Mol Sci. 2019;20(6):1399. https://doi.org/10.3390/ijms20061399.

121. He Y., Du W.X., Jiang H.Y. et al. Multiplex cytokine profiling identifies interleukin-27 as a novel biomarker for neonatal early onset sepsis. Shock. 2017;47(2):140–7. https://doi.org/10.1097/SHK.0000000000000753.

122. Formosa A., Turgeon P., dos Santos C.C. Role of miRNA dysregulation in sepsis. Mol Med. 2022;28(1):99. https://doi.org/10.1186/s10020-022-00527-z.

123. Bindayna K. MicroRNA as sepsis biomarkers: a comprehensive review. Int J Mol Sci. 2024;25(12):6476. https://doi.org/10.3390/ijms25126476.

124. Zheng X., Zhang Y., Lin S. et al. Diagnostic significance of microRNAs in sepsis. PLoS One. 2023;18(2):e0279726. https://doi.org/10.1371/journal.pone.0279726.

125. Yao J., Lui K.Y., Hu X. et al. Circulating microRNAs as novel diagnostic biomarkers and prognostic predictors for septic patients. Infect Genet Evol. 2021;95:105082. https://doi.org/10.1016/j.meegid.2021.105082.

126. Yong J., Toh C.-H. The convergent model of coagulation. J Thromb Haemost. 2024;22(8):2140–6. https://doi.org/10.1016/j.jtha.2024.05.014.

127. Wilhelm G., Mertowska P., Mertowski S. et al. The crossroads of the coagulation system and the immune system: interactions and connections. Int J Mol Sci. 2023;24(16):12563. https://doi.org/10.3390/ijms241612563.

128. Weiss S.L., Peters M.J., Alhazzani W. et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med. 2020;21(2):e52–e106. https://doi.org/10.1097/PCC.0000000000002198.

129. Haque K.N. Defining common infections in children and neonates. J Hosp Infect. 2007;65 Suppl 2:110–4. https://doi.org/10.1016/S0195-6701(07)60026-7.

130. McGovern M., Giannoni E., Kuester H. et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr Res. 2020;88(1):14–26. https://doi.org/10.1038/s41390-020-0785-x.

131. Santhanam I., Sangareddi S., Venkataraman S. et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24(10):647–55. https://doi.org/10.1097/PEC.0b013e31818844cf.

132. Iroh Tam P.-.Y, Musicha P., Kawaza K. et al. Emerging resistance to empiric antimicrobial regimens for pediatric bloodstream infections in Malawi (1998–2017). Clin Infect Dis. 2019;69(1):61–8. https://doi.org/10.1093/cid/ciy834.

133. Perner A., Haase N., Guttormsen A.B. et al. Hydroxyethyl starch 130/0.42 versus ringer’s acetate in severe sepsis. N Engl J Med. https://doi.org/10.1056/NEJMoa1204242.

134. Scott H.F., Brou L., Deakyne S.J. et al. Lactate clearance and normalization and prolonged organ dysfunction in pediatric sepsis. J Pediatr. 2016;170:149–155.e1–4. https://doi.org/10.1016/j.jpeds.2015.11.071.

135. Ramaswamy K.N., Singhi S., Jayashree M. et al. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr Crit Care Med. 2016;17(11):e502–e512. https://doi.org/10.1097/PCC.0000000000000954.

136. Ventura A.M.C., Shieh H.H., Bousso A. et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43(11):2292–302. https://doi.org/10.1097/CCM.0000000000001260.

137. El-Nawawy A., Khater D., Omar H., Wali Y. Evaluation of early corticosteroid therapy in management of pediatric septic shock in pediatric intensive care patients: a randomized clinical study. Pediatr Infect Dis J. 2017;36(2):155–9. https://doi.org/10.1097/INF.0000000000001380.

138. Ray S., Brick T., Raman S. et al. Haemodynamic changes with paracetamol in critically-ill children. J Crit Care. 2017;40:108–12. https://doi.org/10.1016/j.jcrc.2017.03.026.

139. Nahum E., Weissbach A., Kaplan E., Kadmon G. Hemodynamic effects of intravenous paracetamol in critically ill children with septic shock on inotropic support. J Intensive Care. 2020;8:14. https://doi.org/10.1186/s40560-020-0430-0.

140. Festekjian A., Glavinic J. Pediatric septic shock: recognition and management in the emergency department. Pediatr Emerg Med Pract. 2022;19(11):1–24.


Review

For citations:


Bitsadze V.O., Khizroeva J.Kh., Tretyakova M.V., Makatsariya N.A., Gabidullina R.I., Mostovoi A.V., Karpova A.L., Voynovskiy A.E., Novosartyan M.G., Lazarchuk A.V., Khisamieva A.R., Tatarintseva A.Yu., Vorobev A.V., Agasyan K.V., Kapanadze D.L., Zainulina M.S., Serov V.N., Blinov D.V., Gris J., Van Dreden P., Elalamy I., Gerotziafas G., Makatsariya A.D. Fetal systemic inflammatory response syndrome, thromboinflammation and neonatal septic shock: pathogenesis, diagnostics and treatment. Obstetrics, Gynecology and Reproduction. 2025;19(2):250-272. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.619

Views: 34


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)