Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Systematic computer analysis of iron fumarate pharmacology in the treatment of iron deficiency and iron deficiency anemia

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.632

Abstract

Introduction. The use of the safest and most effective methods for iron deficiency (ID) compensation is implicated in current therapy of iron deficiency anemia (IDA). Oral administration of iron salts with organic acid anions is an important field in IDA therapy and prevention. Iron fumarate, being a divalent iron salt and the fumaric acid anion (a tricarboxylic acid cycle metabolite), is absorbed in vivo via gene-encoded molecular mechanisms specialized to interact primarily with fumarate anion.

Aim: to systematize the data from fundamental and clinical studies on iron fumarate pharmacology for ID treatment using topological and metric methods of intellectual analysis.

Results. The results of systematization of studies on iron fumarate pharmacology (more than 500 articles) are presented along and performed categorization of all available publications. The results of the most essential research fields assessing iron fumarate pharmacology are described in detail: (1) comparative pharmacology of iron fumarate and other iron forms; (2) an effect of various iron salts on tissue hemosiderosis; (3) synergism between iron fumarate and folates and other micronutrients; (4) an effect of microbiome state and iron fumarate absorption improved by prebiotics; (5) clinical practice of using iron fumarate for IDA treatment of women in all age groups.

Conclusion. Fumarate-containing preparations are indicated in case where profound substrate-mediated support is required for pillar arms of aerobic and anaerobic energy metabolism ranging from mitochondria and cells to organismal level demanding to mobilize signal-regulatory adaptive reactions. Oral intake of fumarate salt preparations may exert milder and safer effect. In aerobic and hypoxic energy metabolism, which is typical for ID, fumarate salts may act as effective anti-stress and anti-hypoxic agents.

About the Authors

O. A. Gromova
Federal Research Center "Computer Science and Control", Russian Academy of Sciences
Russian Federation

Olga A. Gromova, MD, Dr Sci Med, Prof.

Scopus Author ID: 7003589812

WoS ResearcherID: J-4946-2017

44 bldg. 2, Vavilova Str., Moscow 119333



I. Yu. Torshin
Federal Research Center "Computer Science and Control", Russian Academy of Sciences
Russian Federation

Ivan Yu. Torshin, MD, PhD in Applied Mathematics, PhD in Chemistry

Scopus Author ID: 7003300274

WoS ResearcherID: C-7683-2018

44 bldg. 2, Vavilova Str., Moscow 119333



N. K. Tetruashvili
Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Russian Federation

Nana K. Tetruashvili, MD, Dr Sci Med, Prof.

4 Academician Oparin Str., Moscow 117997



References

1. Clinical guidelines – Iron deficiency anemia – 2024-2025-2026. Moscow: Ministerstvo zdravoohraneniya Rossijskoj Federacii, 2024. 36 р. (In Russ.). Available at: https://pubchem.ncbi.nlm.nih.gov/compound/6433164. [Accessed: 14.02.2025].

2. Geisser P., Baer M., Schaub E. Structure/histotoxicity relationship of parenteral iron preparations. Arzneimittelforschung. 1992;42(12):1439–52.

3. Gromova O.A., Torshin I.Yu. Micronutrients and reproductive health. Guide. [Mikronutriyenty i reproduktivnoye zdorov'ye. Rukovodstvo]. Moscow: GEOTAR-Media, 2022. 832 p. (In Russ.).

4. Gold R., Kappos L., Arnold D.L. et al.; DEFINE Study Investigators. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107. https://doi.org/10.1056/NEJMoa1114287.

5. Torshin I.Yu. On solvability, regularity, and locality of the problem of genome annotation. Pattern Recognit Image Anal. 2010;20(3):386–95. https://doi.org/10.1134/S1054661810030156.

6. Torshin I.Yu. On optimization problems arising from the application of topological data analysis to the search for forecasting algorithms with fixed correctors. [O zadachah optimizacii, voznikayushchih pri primenenii topologicheskogo analiza dannyh k poisku algoritmov prognozirovaniya s fiksirovannymi korrektorami]. Informatika i eyo primeneniya. 2023;17(2):2–10. (In Russ.). https://doi.org/10.14357/19922264230201.

7. Torshin I.Yu., Gromova O.A., Stakhovskaya L.V. et al. Analysis of 19.9 million publications from the PubMed/MEDLINE database using artificial intelligence methods: approaches to the generalizations of accumulated data and the phenomenon of “fake news. [Analiz 19,9 mln publikacij bazy dannyh PubMed/MEDLINE metodami iskusstvennogo intellekta: podhody k obobshcheniyu nakoplennyh dannyh i fenomen “fake news”]. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(2):146–63. (In Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.

8. PubChem. Iron fumarate. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/6451272. [Accessed: 14.02.2025].

9. Chang A., Rugivarodom M., Pungpipattrakul N. et al. Role of oral iron supplementation for anemia secondary to acute nonvariceal upper gastrointestinal bleeding: a randomized controlled trial. J Gastroenterol Hepatol. 2023;38(8):1283–91. https://doi.org/10.1111/jgh.16185.

10. Suva M.A., Tirgar P.R. Comparative evaluation of different oral iron salts in the management of iron deficiency anemia. Daru. 2024;32(2):485–94. https://doi.org/10.1007/s40199-024-00517-y.

11. PubChem. Ferrous polymaltose. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/11377634. [Accessed: 14.02.2025].

12. Iron salts. In: Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions. Ed. J.A. Aronson. Elsevier, 2015. 323–33. https://doi.org/10.1016/b978-0-444-53717-1.00920-3.

13. Kloepfer K., Schmid P., Wuillemin W.A., R?fer A. Reference values for oral iron absorption of bivalent iron in healthy volunteers. Swiss Med Wkly. 2015;145:w14063. https://doi.org/10.4414/smw.2015.14063.

14. Takasawa K., Takaeda C., Maeda T., Ueda N. Hepcidin-25, mean corpuscular volume, and ferritin as predictors of response to oral iron supplementation in hemodialysis patients. Nutrients. 2014;7(1):103–18. https://doi.org/10.3390/nu7010103.

15. Mehta B.C. Iron hydroxide polymaltose – cause of persistent iron deficiency anemia at delivery. Indian J Med Sci. 2001;55(11):616–20.

16. Ruiz-Arg?elles G.J., D?az-Hern?ndez A., Manzano C., Ruiz-Delgado G.J. Ineffectiveness of oral iron hydroxide polymaltose in iron-deficiency anemia. Hematology. 2007;12(3):255–6. https://doi.org/10.1080/10245330701214160.

17. Drexler C., Macher S., Lindenau I. et al. High-dose intravenous versus oral iron in blood donors with iron deficiency: the IronWoMan randomized, controlled clinical trial. Clin Nutr. 2020;39(3):737–45. https://doi.org/10.1016/j.clnu.2019.03.025.

18. Tolkien Z., Stecher L., Mander A.P. et al. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383. https://doi.org/10.1371/journal.pone.0117383.

19. Toblli J.E., Cao G., Oliveri L., Angerosa M. Evaluation of toxicity and oxidative stress induced by intravenous iron isomaltoside 1000 in a nonclinical model. Arzneimittelforschung. 2011;61(10):553–65. https://doi.org/10.1055/s-0031-1300553.

20. Wang X., Zhou D., Liu F. et al. Distribution of different forms of metal ions in Antarctic krill (Euphausia superba) oil: A mechanism of their pro-oxidant effects relating to association colloids. Food Chem. 2025;472:142944. https://doi.org/10.1016/j.foodchem.2025.

21. Gromova O.A., Torshin I.Yu. Vitamins and minerals between Scylla and Charybdis: about misconceptions and other monsters. [Vitaminy i mineraly mezhdu Scilloj i Haribdoj: o miskoncepciyah i drugih chudovishchah]. Moscow: Izdatel'stvo MCNMO, 2013. 693 p. (In Russ.).

22. Melamed N., Ben-Haroush A., Kaplan B., Yogev Y. Iron supplementation in pregnancy – does the preparation matter? Arch Gynecol Obstet. 2007;276(6):601–4. https://doi.org/10.1007/s00404-007-0388-3.

23. Cancelo-Hidalgo M.J., Castelo-Branco C., Palacios S. et al. Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin. 2013;29(4):291–303. https://doi.org/10.1185/03007995.2012.761599.

24. Aronstam A., Aston D.L. A comparative trial of a controlled-release iron tablet preparation (’Ferrocontin’ Continus) and ferrous fumarate tablets. Pharmatherapeutica. 1982;3(4):263–7.

25. Morales J., Vargas F., Cass?s L. et al. Sensorial evaluation of nutritional supplements (PROGRESA) enriched with 3 different forms of iron in a rural Mexican community. J Food Sci. 2008;73(1):S1–5. https://doi.org/10.1111/j.1750-3841.2007.00581.x.

26. Srivastava R., Kant S., Singh A.K. et al. Effect of iron and folic acid tablet versus capsule formulation on treatment compliance and iron status among pregnant women: a randomized controlled trial. J Family Med Prim Care. 2019;8(2):378–84. https://doi.org/10.4103/jfmpc.jfmpc_339_18.

27. Sturov V.G., Melchenko N.I., Balysheva A.S. Anemia in women of reproductive age in current clinical practice and effectiveness of iron fumarate combined with folate. [Anemicheskij sindrom u zhenshchin reproduktivnogo vozrasta v sovremennyh klinicheskih realiyah i ocenka effektivnosti fumarata zheleza v sochetanii s folatami]. Ginekologiya. 2023;25(1):72–6. (In Russ.). https://doi.org/10.26442/20795696.2023.1.202119.

28. Xavier A.M., Rai K., Hegde A.M., Shetty S. A spectroscopic and surface microhardness study on enamel exposed to beverages supplemented with lower iron concentrations. J Clin Pediatr Dent. 2015;39(2):161–7. https://doi.org/10.17796/jcpd.39.2.g52v661835527526.

29. Nazemisalman B., Mohseni M., Darvish S. et al. Effects of iron salts on demineralization and discoloration of primary incisor enamel subjected to artificial cariogenic challenge versus saline immersion. Healthcare (Basel). 2023;11(4):569. https://doi.org/10.3390/healthcare11040569.

30. Gromova O.A., Torshin I.Yu., Tetruashvili N.K. et al. On use of multicomponent vitamin-mineral complexes for prevention of iron deficiency anemia in pregnant women. [Ob ispol'zovanii mnogokomponentnyh vitaminno-mineral'nyh kompleksov dlya profilaktiki zhelezodeficitnoj anemii u beremennyh]. Medicinskij alfavit. 2018;2(13):6–19. (In Russ.).

31. Gromova O.A., Torshin I.Yu., Tetruashvili N.K., Pavlovich S.V. Systematic analysis of the molecular synergy between folic acid and ferrous fumarate in iron deficiency anemia. [Sistematicheskij analiz molekulyarnogo sinergizma folievoj kisloty i fumarata zheleza pri zhelezodeficitnoj anemii]. Akusherstvo i ginekologiya. 2022;(12):178–86. (In Russ.). https://doi.org/10.18565/aig.2022.301.

32. Suliburska J., Skrypnik K., Chmurzy?ska A. Folic acid affects iron status in female rats with deficiency of these micronutrients. Biol Trace Elem Res. 2020;195(2):551–8. https://doi.org/10.1007/s12011-019-01888-z.

33. Agostoni C., Giovannini M., Sala D. et al. Double-blind, placebo-controlled trial comparing effects of supplementation of two micronutrient sprinkles on fatty acid status in Cambodian infants. J Pediatr Gastroenterol Nutr. 2007;44(1):136–42. https://doi.org/10.1097/01.mpg.0000243429.24463.2f.

34. Nwagha T.U., Ugwu A.O., Nwaekpe C.N. Iron supplementation and blood donation in Nigeria: effect on hemoglobin, red cell indices, and iron stores – the Ranferon™ study. Ann Afr Med. 2023;22(1):70–6. https://doi.org/10.4103/aam.aam_248_21.

35. Christofides A., Asante K.P., Schauer C. et al. Multi-micronutrient sprinkles including a low dose of iron provided as microencapsulated ferrous fumarate improves haematologic indices in anaemic children: a randomized clinical trial. Matern Child Nutr. 2006;2(3):169–80. https://doi.org/10.1111/j.1740-8709.2006.00060.x.

36. Alenkina I.V., Chukin A.V., Leitus G. et al. Analysis of the iron states in iron-containing pharmaceutical products using M?ssbauer spectroscopy. J Pharm Biomed Anal. 2024;237:115745. https://doi.org/10.1016/j.jpba.2023.115745.

37. Teucher B., Olivares M., Cori H. Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res. 2004;74(6):403–19. https://doi.org/10.1024/0300-9831.74.6.403.

38. Liu T.C., Lin S.F., Chang C.S. et al. Comparison of a combination ferrous fumarate product and a polysaccharide iron complex as oral treatments of iron deficiency anemia: a Taiwanese study. Int J Hematol. 2004;80(5):416–20. https://doi.org/10.1532/ijh97.a10409.

39. Layrisse M., Garc?a-Casal M.N., Solano L. et al. New property of vitamin A and beta-carotene on human iron absorption: effect on phytate and polyphenols as inhibitors of iron absorption. Arch Latinoam Nutr. 2000;50(3):243–8.

40. Gupta K.C., Paul T., Mehta J.M. et al. Study of bioavailability of oral iron preparations. J Postgrad Med. 1976;22(2):94–9.

41. Fischer J.A.J., Sasai C.S., Karakochuk C.D. Iron-containing oral contraceptives and their effect on hemoglobin and biomarkers of iron status: a narrative review. Nutrients. 2021;13(7):2340. https://doi.org/10.3390/nu13072340.

42. Dong Z., Zhang D., Wu X. et al. Ferrous bisglycinate supplementation modulates intestinal antioxidant capacity via the AMPK/FOXO pathway and reconstitutes gut microbiota and bile acid profiles in pigs. J Agric Food Chem. 2022;70(16):4942–51. https://doi.org/10.1021/acs.jafc.2c00138.

43. Elms L., Hand B., Skubisz M. et al. The effect of iron supplements on the gut microbiome of females of reproductive age: a randomized controlled trial. J Nutr. 2024;154(5):1582–7. https://doi.org/10.1016/j.tjnut.2024.03.014.

44. Mahalanabis D., Islam M.A., Shaikh S. et al. Haematological response to iron supplementation is reduced in children with asymptomatic Helicobacter pylori infection. Br J Nutr. 2005;94(6):969–75. https://doi.org/10.1079/bjn20051586.

45. Husmann F.M.D., Zimmermann M.B., Herter-Aeberli I. The effect of prebiotics on human iron absorption: a review. Adv Nutr. 2022;13(6):2296–304. https://doi.org/10.1093/advances/nmac079.

46. Giorgetti A., Paganini D., Nyilima S. et al. The effects of 2'-fucosyllactose and lacto-N-neotetraose, galacto-oligosaccharides, and maternal human milk oligosaccharide profile on iron absorption in Kenyan infants. Am J Clin Nutr. 2023;117(1):64–72. https://doi.org/10.1016/j.ajcnut.2022.10.005.

47. Jeroense F.M.D., Zeder C., Zimmermann M.B., Herter-Aeberli I. Acute consumption of prebiotic galacto-oligosaccharides increases iron absorption from ferrous fumarate, but not from ferrous sulfate and ferric pyrophosphate: stable iron isotope studies in iron-depleted young women. J Nutr. 2020;150(9):2391–7. https://doi.org/10.1093/jn/nxaa199.

48. Ren H.T., Du M.X., Zhou J., An H.Y. Effect of spirulina and ferrous fumarate on intestinal morphology and the diversity of gut microbiota of yellow river carp. Biol Trace Elem Res. 2022;200(9):4142–9. https://doi.org/10.1007/s12011-021-02993-8.

49. Milman N., Byg K.E., Bergholt T., Eriksen L. Side effects of oral iron prophylaxis in pregnancy – myth or reality? Acta Haematol. 2006;115(1–2):53–7. https://doi.org/10.1159/000089466.

50. Milman N.T. Iron supplementation in pregnant Danish women revisited: Effects on prepartum and postpartum iron deficiency, anemia, serum erythropoietin; including iron status, erythropoietin and anthropometrics in newborns. A randomized, placebo-controlled study. J Neonatal Perinatal Med. 2022;15(4):731–44. https://doi.org/10.3233/NPM-221014.

51. Braithwaite V.S., Mwangi M.N., Jones K.S. et al. Antenatal iron supplementation, FGF23, and bone metabolism in Kenyan women and their offspring: secondary analysis of a randomized controlled trial. Am J Clin Nutr. 2021;113(5):1104–14. https://doi.org/10.1093/ajcn/nqaa417.

52. Karakoc G., Orgul G., Sahin D., Yucel A. Is every other day iron supplementation effective for the treatment of the iron deficiency anemia in pregnancy? J Matern Fetal Neonatal Med. 2022;35(5):832–6. https://doi.org/10.1080/14767058.2021.1910666.

53. Torshin I.Yu., Gromova O.A., Limanova O.A. et al. A meta-analysis of clinical studies on the use of iron fumarate for the prevention and treatment of iron deficiency anemia in pregnant women. [Metaanaliz klinicheskih issledovanij po primeneniyu fumarata zheleza s cel'yu profilaktiki i terapii zhelezodeficitnoj anemii u beremennyh]. Ginekologiya. 2015;17(5):24–31. (In Russ.).

54. Kivivuori S.M., Virtanen M., Raivio K.O. et al. Oral iron is sufficient for erythropoietin treatment of very low birth-weight infants. Eur J Pediatr. 1999;158(2):147–51. https://doi.org/10.1007/s004310051036.

55. Liyanage C., Zlotkin S. Bioavailability of iron from micro-encapsulated iron sprinkle supplement. Food Nutr Bull. 2002;23(3 Suppl):133–7.

56. Tay E.L., Peset A., Papaphylactou M. et al. Replacement therapy for iron deficiency improves exercise capacity and quality of life in patients with cyanotic congenital heart disease and/or the Eisenmenger syndrome. Int J Cardiol. 2011;151(3):307–12. https://doi.org/10.1016/j.ijcard.2010.05.066.

57. Mei Z., Chen J., Luo S. et al. Comparative efficacy of intravenous and oral iron supplements for the treatment of iron deficiency in patients with heart failure: A network meta-analysis of randomized controlled trials. Pharmacol Res. 2022;182:106345. https://doi.org/10.1016/j.phrs.2022.106345.

58. Recommendation of the Board of the Eurasian Economic Commission N 2 dated of January 16, 2018 "On the Guidelines for the Quality of Modified-Release Medicinal Products for Oral Administration". [Rekomendaciya Kollegii evrazijskoj ekonomicheskoj komissii N 2 ot 16 yanvarya 2018 g. «O Rukovodstve po kachestvu lekarstvennyh preparatov s modificirovannym vysvobozhdeniem dlya priema vnutr'»]. Available at: https://www.alta.ru/tamdoc/18rk0002. [Accessed: 14.02.2025].

59. Shikh E.V., Eremenko N.N., Pakhomova A.E., Pozdnyakov A.V. Compliance of the dissolution profile of Ferretab comp. with the requirements for modified release drugs: optimization of biopharmaceutical, pharmacokinetic and pharmacodynamic properties. [Sootvetstvie profilya rastvoreniya Ferretab komp. trebovaniyam, pred"yavlyaemym lekarstvennym preparatam modificirovannogo vysvobozhdeniya: optimizaciya biofarmacevticheskih, farmakokineticheskih i farmakodinamicheskih svojstv]. Farmakologiya & Farmakoterapiya. 2024;(4):19–29. (In Russ.).


What is already known about this subject?

► Organic iron salts are of the lowest toxicity and hold top inte­rest for prevention and treatment of iron deficiency anemia (IDA).

► Little information regarding organic iron salt pharmacokinetics and pharmacodynamics is available.

► There are fundamental and clinical data indicating about effectiveness and safety of iron fumarate administration.

What are the new findings?

► All available studies regarding iron fumarate have been categorized, additionally providing comparative pharmacology of fumarate and other iron forms, effects on hemosiderosis, synergism between iron fumarate and other micronutrients as well as microbiome along with clinical applications of iron fumarate in IDA treatment of pregnant women.

How might it impact on clinical practice in the foreseeable future?

► Iron fumarate vs. iron sulfate causes less damage to tooth enamel.

► Vitamin-mineral complex preparations containing iron fumarate are characterized by fewer side effects and better adherence to IDA therapy in postpartum women.

Review

For citations:


Gromova O.A., Torshin I.Yu., Tetruashvili N.K. Systematic computer analysis of iron fumarate pharmacology in the treatment of iron deficiency and iron deficiency anemia. Obstetrics, Gynecology and Reproduction. 2025;19(2):230-249. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.632

Views: 660


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)