Taxonomic diversity of the intestinal microbiome landscape and its clinical significance in recurrent pregnancy loss
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.620
Abstract
Aim: to study taxonomic diversity of the intestinal microbiome landscape in relation to neuro-immune-humoral biomarkers in patients with recurrent pregnancy loss (RPL).
Materials and Methods. A cross-sectional comparative study was conducted by enrolling 55 pregnant women with history of RPL (main group) and 60 women with physiological pregnancy (control group). All women underwent serum tumor necrosis factor-alpha (TNF-α), interleukin (IL) IL-17, cortisol and melatonin levels assessment using enzyme-linked immunosorbent assay. The taxonomic composition of the intestinal microbiota at the birth level was examined using 16S ribosomal RNA gene sequencing. The Chao1, Sobs, and ACE (Abundance Coverage Estimator) indices were used to assess α-diversity of microbial community.
Results. It was found that α-diversity of the bacterial community in patients with RPL was significantly decreased assessed by Chao1 index (p = 0.014). A significant decline in prevalence of the genera Bifidobacterium (p < 0.001), Lаchnоsріra (p = 0.032), Roseburia (p = 0.003), Соррососcus (p = 0.012) was established along with rise in Ruminососсus (p < 0.001) and Кlebsiеllа (p = 0.002) in women with RPL. Moreover, there were observed several significant relations: а positive correlation between abundance of Ruminococcus bacteria and TNF-α level (r = 0.49; p = 0.003), a negative correlation between abundance of Bifidobacterium and IL-17 (r = –0.54; p = 0.001), abundance of Lachnospira and cortisol level (r = –0.46; p = 0.002), as well as abundance of Coprococcus and melatonin level in blood serum (r = –0.58; p = 0.028).
Conclusion. It was found out that patients with RPL are characterized by dysbiotic changes in the microbiome landscape. The statistically significant correlations between some microbiota representatives and neuro-immune-humoral biomarkers suggest that dysbiotic alterations in the intestine may be involved in developing immune disorders and dysregulation of the pineal-pituitary-adrenal axis underlying RPL pathogenesis.
About the Authors
A. V. TormozovaRussian Federation
Arina V. Tormozova
5/7 Lenin Avenue, Simferopol 295051
A. A. Erakaeva
Russian Federation
Albina A. Erakaeva
5/7 Lenin Avenue, Simferopol 295051
G. A. Ibadullaeva
Russian Federation
Gulnar A. Ibadullaeva
5/7 Lenin Avenue, Simferopol 295051
A. S. Galata
Russian Federation
Anastasia S. Galata
5/7 Lenin Avenue, Simferopol 295051
A. S. Asinovskaya
Russian Federation
Alexandra S. Asinovskaya
5/7 Lenin Avenue, Simferopol 295051
D. E. Kuzyura
Russian Federation
Diana E. Kuzyura
5/7 Lenin Avenue, Simferopol 295051
K. N. Efremova
Russian Federation
Kristina N. Efremova
5/7 Lenin Avenue, Simferopol 295051
V. M. Chos
Russian Federation
Valeria M. Chos
5/7 Lenin Avenue, Simferopol 295051
U. V. Svarnik
Russian Federation
Ulyana V. Svarnik
5/7 Lenin Avenue, Simferopol 295051
A. A. Dyachenko
Russian Federation
Alina A. Dyachenko
5/7 Lenin Avenue, Simferopol 295051
A. N. Mavlyutova
Russian Federation
Ayshe N. Mavlyutova
5/7 Lenin Avenue, Simferopol 295051
L. A. Mukosiy
Russian Federation
Lyudmila A. Mukosiy
5/7 Lenin Avenue, Simferopol 295051
Yu. S. Karpus
Russian Federation
Yulia S. Karpus
5/7 Lenin Avenue, Simferopol 295051
E. D. Pirozhkova
Russian Federation
Evgeniya D. Pirozhkova
1 Ostrovityanovа Str., Moscow, 117513
F. A. Albekova
Russian Federation
Fedire A. Albekova
5/7 Lenin Avenue, Simferopol 295051
L. E. Sorokina
Russian Federation
Leya E. Sorokina, MD
5/7 Lenin Avenue, Simferopol 295051;
4 Academika Oparina Str., Moscow 117997
References
1. Clinical guidelines – Miscarriage (spontaneous abortion) – 2021-2022-2023 (19.01.2023). [Klinicheskie rekomendacii – Vykidysh (samoproizvol'nyj abort) – 2021-2022-2023 (19.01.2023)]. Moscow: Ministerstvo zdravoohraneniya Rossijskoj Federacii, 2023. 25 p. (In Russ.). Available at: https://disuria.ru/_ld/12/1232_kr21O02O05MZ.pdf. [Accessed: 20.05.2024].
2. Polushkina E.S., Shmakov R.G. The role of dydrogesterone in habitual miscarriage. [Rol' didrogesterona v privychnom nevynashivanii beremennosti]. Medicinskij sovet. 2020;(3):74–7. (In Russ.). https://doi.org/10.21518/2079-701X-2020-3-74-77.
3. Grigushkina E.V., Malyshkina A.I., Sotnikova N.Yu. et al. Pathogenetic aspects of habitual miscarriage. [Patogeneticheskie aspekty privychnogo nevynashivaniya beremennosti]. Vestnik Ivanovskoj gosudarstvennoj medicinskoj akademii. 2021;26(2):30–6. (In Russ.). https://doi.org/10.52246/1606-8157_2021_26_2_30.
4. Dai F.-F., Hu M., Zhang Y.-W. et al. TNF-α/anti-TNF-α drugs and its effect on pregnancy outcomes. Expert Rev Mol Med. 2022;24:e26. https://doi.org/10.1017/erm.2022.18.
5. Saifi B., Rezaee S.A., Tajik N. et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reprod Biomed Online. 2014;29(4):481–9. https://doi.org/10.1016/j.rbmo.2014.06.008.
6. Piccinni M.P., Raghupathy R., Saito S., Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 2021;12:717808. https://doi.org/10.3389/fimmu.2021.717808.
7. Yang S.-L, Tan H.-X., Niu T.-T. et al. Kynurenine promotes the cytotoxicity of NK cells through aryl hydrocarbon receptor in early pregnancy. J Reprod Immunol. 2021;143:103270. https://doi.org/10.1016/j.jri.2020.103270.
8. Sha J., Liu F., Zhai J. et al. Alteration of Th17 and Foxp3+ regulatory T cells in patients with unexplained recurrent spontaneous abortion before and after the therapy of hCG combined with immunoglobulin. Exp Ther Med. 2017;14(2):1114–18. https://doi.org/10.3892/etm.2017.4574.
9. Sheng J.A., Bales N.J., Myers S.A. et al. The hypothalamic-pituitary-adrenal axis: development, programming actions of hormones, and maternal-fetal interactions. Front Behav Neurosci. 2021;14:601939. https://doi.org/10.3389/fnbeh.2020.601939.
10. McCarthy R., Jungheim E.S, Fay J.C. et al. Riding the rhythm of melatonin through pregnancy to deliver on time. Front Endocrinol (Lausanne). 2019;13(10):616. https://doi.org/10.3389/fendo.2019.00616.
11. Nepomnaschy P.A., Welch K.B., McConnell D.S. et al. Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci U S A. 2006;103(10):3938–42. https://doi.org/10.1073/pnas.0511183103.
12. Palmer K.T., Bonzini M., Harris E.C. et al. Work activities and risk of prematurity, low birthweight and pre-eclampsia: an updated review with meta-analysis. Occup Environ Med. 2013;70(4):213–22. https://doi.org/10.1136/oemed-2012-101032.
13. Kisanga E.P., Tang Z., Guller S., Whirledge S. Glucocorticoid signaling regulates cell invasion and migration in the human first-trimester trophoblast cell line Sw.71. Am J Reprod Immunol. 2018;80(1):e12974. https://doi.org/10.1111/aji.12974.
14. Húngaro T.G.R., Gregnani M.F., Alves-Silva T. et al. Cortisol dose-dependently impairs migration and tube-like formation in a trophoblast cell line and modulates inflammatory and angiogenic genes. Biomedicines. 2021;9(8):980. https://doi.org/10.3390/biomedicines9080980.
15. Sandyk R., Anastasiadis P.G., Anninos P.A., Tsagas N. The pineal gland and spontaneous abortions: Implications for therapy with melatonin and magnetic field. Int J Neurosci. 1992;62(3–4):243–50. https://doi.org/10.3109/00207459108999775.
16. Jin M., Li D., Ji R. et al. Changes in gut microorganism in patients with positive immune antibody-associated recurrent abortion. Biomed Res Int. 2020;2020:4673250. https://doi.org/10.1155/2020/4673250.
17. Cui Y., Zou L., Ye Q. et al. Gut microbiota composition and functional prediction in recurrent spontaneous abortion. Research Square. 2021;1:1–22. https://doi.org/10.21203/rs.3.rs-906730/v1.
18. Liu Y., Chen H., Feng L., Zhang J. Interactions between gut microbiota and metabolites modulate cytokine network imbalances in women with unexplained miscarriage. NPJ Biofilms Microbiomes. 2021;7(1):24. https://doi.org/10.1038/s41522-021-00199-3.
19. Henke M.T, Kenny D.J., Cassilly C.D. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A. 2019;116(26):12672–7. https://doi.org/10.1073/pnas.1904099116.
20. Bromberg J.S., Hittle L, Xiong Y. et al. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018;3(19):e121045. https://doi.org/10.1172/jci.insight.1210452672–12677.
21. Ziegler D.R., Herman J.P. Neurocircuitry of stress integration: anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integr Comp Biol. 2002;42(3):541–51. https://doi.org/10.1093/icb/42.3.541.
22. Porosyuk M.V., Klementyev D.D., Khodov N.A. et al. Gut microbiota alterations in patients with juvenile idiopathic arthritis. [Izmeneniya mikrobioty kishechnika u bol'nyh yuvenil'nym idiopaticheskim artritom]. Vestnik RGMU. 2022;(6):13–9. (In Russ.). https://doi.org/10.24075/vrgmu.2022.060.
23. Huang X., Qiu Y., Gao Y. et al. Gut microbiota mediate melatonin signalling in association with type 2 diabetes. Diabetologia. 2022;65(10):1627–41. https://doi.org/10.1007/s00125-022-05747-w.
Review
For citations:
Tormozova A.V., Erakaeva A.A., Ibadullaeva G.A., Galata A.S., Asinovskaya A.S., Kuzyura D.E., Efremova K.N., Chos V.M., Svarnik U.V., Dyachenko A.A., Mavlyutova A.N., Mukosiy L.A., Karpus Yu.S., Pirozhkova E.D., Albekova F.A., Sorokina L.E. Taxonomic diversity of the intestinal microbiome landscape and its clinical significance in recurrent pregnancy loss. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.620

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.