Clinical and functional significance of determining biological age in women during the reproductive period
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.582
Abstract
Introduction. Biological age (BA) reflects the characteristics of the morphological and physiological state of the human body at a specific period of its life.This concept is of particular importance in reproductive medicine, because actual age does not always correlate with the state of organs and systems.
Aim: to develop a method for calculating BA for women aged 20–45 years, considering their physiological state and reproductive function.
Materials and Methods. A single-stage non-randomized cohort study was conducted. To create the BA calculation model, a study was conducted with 100 healthy women aged 20–45 years. Seventy-eight parameters were analyzed, including anamnesis data, anthropometric parameters, data of general blood test, biochemical blood test, instrumental studies, assessment of overall antioxidant status (ОAS), from which the most informative variables were selected. The model was developed using multiple linear regression.
Results. The most informative indicators for calculating BA were: ОAS, static balance time (SBT), body mass index (BMI), and number of former pregnancies. The developed BA calculation formula demonstrated high accuracy, correlating with chronological age (correlation coefficient of 0.947).
Conclusion. The proposed BA calculation method is specifically designed for women of reproductive age and shows high accuracy and correlation with chronological age. The inclusion of antioxidant protection parameters, functional state indicators, and reproductive history makes the method versatile and applicable not only in reproductive medicine but also in general medical practice, obstetrics, gynecology, and other fields.
About the Authors
E. V. KudryavtsevaRussian Federation
Elena V. Kudryavtseva, MD, Dr Sci Med.
3 Repina Str., Ekaterinburg 620028; 8b Karl Libknecht Str., Ekaterinburg 620075
D. A. Berezina
Russian Federation
Dinara A. Berezina, MD
3 Repina Str., Ekaterinburg 620028
V. V. Bazarny
Russian Federation
Vladimir V. Bazarnyi, MD, Dr Sci Med.
3 Repina Str., Ekaterinburg 620028
L. G. Polushina
Russian Federation
Larisa G. Polushina, MD, PhD.
3 Repina Str., Ekaterinburg 620028
M. А. Kopenkin
Russian Federation
Maxim A. Kopenkin, MD.
3 Repina Str., Ekaterinburg 620028
A. N. Troitskaya
Russian Federation
Anastasia N. Troitskaya, MD.
3 Repina Str., Ekaterinburg 620028
V. V. Kovalev
Russian Federation
Vladislav V. Kovalev, MD, Dr Sci Med, Prof.
8b Karl Libknecht Str., Ekaterinburg 620075
References
1. Tokar A.V., Voitenko V.P. Biological age. Heredity and aging. [Biologicheskij vozrast. Nasledstvennost' i starenie]. Kiev: Institut gerontologii, 2002. 143 p. (In Russ.).
2. Rakova A.G., Kudrenok M.G., Venitsiansky A.S. Zimina Yu.A. Modern methods of determining biological age. [Sovremennye metody opredeleniya biologicheskogo vozrasta]. Vestnik fakul'teta biznesa i prava. 2023;(3):105–12. (In Russ.).
3. Karimov D.D., Kudoyarov E.R., Mukhammadiyeva G.F. et al. Biomarkers of ageing in the study of occupational harm impacts (literature review). [Biomarkery stareniya v issledovanii professional'no obuslovlennyh vrednyh vozdejstvij (obzor literatury)]. Gigiena i sanitariya. 2021;100(11):1328–32. (In Russ.). https://doi.org/10.47470/0016-9900-2021-100-11-1328-1332.
4. Eskes T., Haanen C. Why do women live longer than men? Eur J Obstet Gynecol Reprod Biol. 2007;133(2):126–33. https://doi.org/10.1016/j.ejogrb.2007.01.006.
5. Hauck A.K., Huang Y., Hertzel A.V., Bernlohr D.A. Adipose oxidative stress and protein carbonylation. J Biol Chem. 2019;294(4):1083–8. https://doi.org/10.1074/jbc.R118.003214.
6. Wang L., Tang J., Wang L. et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. 2021;236(12):7966–83. https://doi.org/10.1002/jcp.30468.
7. Mezentsev Yu.A., Osipova O.A. Review of current information impact of oxidative stress on premature aging. [Obzor sovremennoj informacii o vliyanii oksidativnogo stressa na prezhdevremennoe starenie]. Sovremennye problemy zdravoohraneniya i medicinskoj statistiki. 2022;(5):249–69. (In Russ.). https://doi.org/10.24412/2312-2935-2022-5-249-269.
8. Lysenko V.I. Oxidative stress as a nonspecific factor of organ damage pathogenesis (review of literature and own data). [Oksidativnyj stress kak nespecificheskij faktor patogeneza organnyh povrezhdenij (obzor literatury i sobstvennyh issledovanij)]. Medicina neotlozhnyh sostoyanij. 2020;16(1):24–5. (In Russ.). https://doi.org/10.22141/2224-0586.16.1.2020.196926.
9. Berezina D.A., Kudryavtseva E.V., Gavrilov I.V. Role of oxidative stress in female reproductive system: literature review. [Rol' okislitel'nogo stressa v zhenskoj reproduktivnoj sisteme: obzor literatury]. Permskij medicinskij zhurnal. 2023;40(4):62–72. (In Russ.). https://doi.org/10.17816/pmj40462-72.
10. Canbolat K.H., Öncül M., Özel A. et al. Oxidative stress and antioxidant status in threatened preterm labor. Arch Gynecol Obstet. 2023;309(4):1395–400. https://doi.org/10.1007/s00404-023-07023-7.
11. Clower L., Fleshman T., Geldenhuys W.J, Santanam N. Targeting oxidative stress involved in endometriosis and its pain. Biomolecules. 2022;12(8):1055. https://doi.org/10.3390/biom12081055.
12. Tenkorang M.A., Snyder B., Cunningham R.L. Sex-related differences in oxidative stress and neurodegeneration. Steroids. 2018;133:21–7. https://doi.org/10.1016/j.steroids.2017.12.010.
13. Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1120–32. https://doi.org/10.1038/aps.2018.25.
14. Gushturova I.V. Practical training on the basics of gerontology: educational manual. [Praktikum po osnovam gerontologii: uchebnometodicheskoe posobie]. Izhevsk: Izdatel'skij dom «Udmurtskij universitet», 2019. 206 p. (In Russ.).
15. Kasatkina Yu.I., Petrova E.A. Comparative characteristics of methods on the determination of the biological age of a person by V.P. Voitenko and by A.G. Gorelkin. [Sravnitel'naya harakteristika metodik po opredeleniyu biologicheskogo vozrasta cheloveka po V.P. Vojtenko i po A.G. Gorelkinu]. Mezhdunarodnyj studencheskij nauchnyj vestnik. 2018;(5):15–22. (In Russ.).
16. Belozerova L.M. Method for determining human biological age. Patent RU 2228137 C1. [Sposob opredeleniya biologicheskogo vozrasta cheloveka. Patent RU 2228137 C1]. 10.05.2004. 5 p. (In Russ.). Available at: https://patents.s3.yandex.net/RU2228137C1_20040510.pdf. [Accessed: 10.08.2024].
17. Jia L., Zhang W., Chen X. Common methods of biological age estimation. Clin Interv Aging. 2017;12:759–72. https://doi.org/10.2147/CIA.S134921.
18. Klemera P., Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006;127(3):240–8. https://doi.org/10.1016/j.mad.2005.10.004.
19. Kwon D., Belsky D.W. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience. 2021;43(6):2795–808. https://doi.org/10.1007/s11357-021-00480-5.
20. Dontsov V.I., Krutko V.N. System analysis of aging biomarkers for determining biological age. [Sistemnyj analiz biomarkerov stareniya dlya opredeleniya biologicheskogo vozrasta]. Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. 2018;68(4):32–41. (In Russ.). https://doi.org/10.14357/20790279180404.
21. Jylhävä J., Pedersen N. L., Hägg S. Biological age predictors. EBioMedicine. 2017;21:29–36. https://doi.org/10.1016/j.ebiom.2017.03.046.
22. Montile A.I., Davydov O.D., ShalaumovaYu.V. Stabilometric markers of biological age. [Stabilometricheskie markery biologicheskogo vozrasta]. Uspekhi gerontologii. 2018;31(5):684–90. (In Russ.).
23. Gavrilov I.V., Meshchaninov V.N., Tkachenko E.L. et al. Method for biological age determenation for women. [Sposob opredeleniya biologicheskogo vozrasta u zhenshchin]. Patent RU 2617801 C1. 26.04.2017. Bul. No. 12. 9 p. (In Russ.). Available at: https://patents.s3. yandex.net/RU2617801C1_20170426.pdf. [Accessed: 10.08.2024].
What is already known about this subject?
► Biological age (BA) reflects body physiological state and does not always overlap with passport age, which is especially important in reproductive medicine.
► Existing methods for calculating BA are often based on limited data and do not take into account the features of reproductive age women, thereby underlying a need to develop new, more accurate methods.
► Oxidative stress affects health being related to diseases and can accelerate aging, emphasizing an importance of body antioxidant function.
What are the new findings?
► A new method for BА calculation is proposed for women aged 20–45, taking into account their physiological state and reproductive function.
► The proposed method for calculating BA includes the overall antioxidant status (OAS), which allows for a more accurate assessment of individual aging rates.
How might it impact on clinical practice in the foreseeable future?
► The implementation of the proposed model in reproductive medicine will increase effectiveness of women's health monitoring.
► Taking into account the OAS in clinical practice can lead to development of individualized approaches to disease treatment and prevention.
Review
For citations:
Kudryavtseva E.V., Berezina D.A., Bazarny V.V., Polushina L.G., Kopenkin M.А., Troitskaya A.N., Kovalev V.V. Clinical and functional significance of determining biological age in women during the reproductive period. Obstetrics, Gynecology and Reproduction. 2025;19(1):26-34. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.582

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.