Preview

Obstetrics, Gynecology and Reproduction

Advanced search

The influence of environmental factors on woman's reproductive health

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.564

Abstract

Introduction. The environment undoubtedly affects the physiological processes in human body, which may be both beneficial and harmful. From 2011 to 2021, the incidence of female infertility in Russia increased by 30 % reaching 789.1 cases per 100,000 women in 2021.

Aim: to assess an impact of environmental factors including endocrine disrupting chemicals (EDC) on women's reproductive health by assessing available publications.

Materials and Methods. Available studies were searched through the scientific literature databases until April 2024 by revealing 5,732 articles in the PubMed/MEDLINE database, 6,587 in Google Scholar and 2,350 in eLibrary. The publications were selected in accordance with PRISMA recommendations. The current review included 90 publications.

Results. Fertility experimental and epidemiological studies showed that environmental factors such as climate, temperature, seasonality, radiation, air pollution, diet and energy balance, working environment, bad habits (e.g. smoking), EDC (plasticizers, heavy metals, parabens, pesticides, industrial chemicals and their by-products, medicines, perfluorochemicals, antibacterial agents) may be associated with impaired female reproductive function.

Conclusion. Environmental factors, including EDC, have a significant impact on women's reproductive health and can negatively affect fertility. The main findings of current research confirm a need to raise awareness of the risks associated with exposure to chemicals on women's body.

About the Authors

I. A. Zhirnov
Ural State Medical University, Health Ministry of Russian Federation
Russian Federation

Igor A. Zhirnov

3 Repina Str., Ekaterinburg 620028



K. A. Nazmieva
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Ksenia A. Nazmieva, MD

3 Lenin Str., Ufa 450008



A. I. Khabibullina
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Aigul I. Khabibullina

3 Lenin Str., Ufa 450008



L. A. Ilyasova
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Leysan A. Ilyasova

3 Lenin Str., Ufa 450008



N. S. Saidmursalova
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Nilufar S. Saidmursalova

3 Lenin Str., Ufa 450008



R. R. Demisheva
Kadyrov Chechen State University
Russian Federation

Rayana R. Demisheva

32 A. Sheripova Str., Grozny 364024



P. E. Alikhadzhieva
Kadyrov Chechen State University
Russian Federation

Petimat Е. Alikhadzhieva

32 A. Sheripova Str., Grozny 364024



A. Kh. Soltagereeva
Kadyrov Chechen State University
Russian Federation

Ayana Kh. Saltagereeva

32 A. Sheripova Str., Grozny 364024



A. A. Golovnya
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Alina A. Golovnya

3 Lenin Str., Ufa 450008



A. V. Kakhramonova
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Anna V. Kakhramonova

3 Lenin Str., Ufa 450008



I. M. Dzhalilov
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Ikromjon M. Dzhalilov

3 Lenin Str., Ufa 450008



U. U. Galimova
Razumovsky Saratov State Medical University, Health Ministry of Russian Federation
Russian Federation

Umakusum U. Galimova

112 Bolshaya Kazachya Str., Saratov 410012



References

1. Di Renzo G.C. Nutrients and environmental toxicants: effect on placental function and fetal growth. Obstetrics, Gynecology and Reproduction. 2024;18(1):112–24. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.487.

2. Silva A.B.P., Carreiró F., Ramos F., Sanches-Silva A. The role of endocrine disruptors in female infertility. Mol Biol Rep. 2023;50(8):7069–88. https://doi.org/10.1007/s11033-023-08583-2.

3. Saltanova I.V., Pigarova E.A. Endocrine disruptors – chemicals that disrupt the functions of the endocrine system: a story about bisphenol A. [Endokrinnye disraptory – himicheskie veshchestva, narushayushchie funkcii endokrinnoj sistemy: rasskaz o bisfenole A]. Ozhirenie i metabolism. 2013;10(3):55–7. (In Russ.). https://doi.org/10.14341/2071-8713-3866.

4. Carson S.A., Kallen A.N. Diagnosis and management of infertility: A review. JAMA. 2021;326(1):65–76. https://doi.org/10.1001/jama.2021.4788.

5. Nik Hazlina N.H., Norhayati M.N., Shaiful Bahari I. et al. Worldwide prevalence, risk factors and psychological impact of infertility among women: a systematic review and meta-analysis. BMJ Open. 2022;12(3):e057132. https://doi.org/10.1136/bmjopen-2021-057132.

6. Savina A.A., Zemlyanova E.V., Feiginova S.I. Potential births loss due to female and male infertility in Moscow. [Poteri potencial'nyh rozhdenij v g. Moskve za schet zhenskogo i muzhskogo besplodiya]. Zdorov'e megapolisa. 2022;3(3):39–45. (In Russ.). https://doi.org/10.47619/2713-2617.zm.2022.v.3i3;39-45.

7. Gelbaya T.A., Potdar N., Jeve Y.B., Nardo L.G. Definition and epidemiology of unexplained infertility. Obstet Gynecol Surv. 2014;69(2):109–15. https://doi.org/10.1097/OGX.0000000000000043.

8. Kuznetsov K.O., Ishbaev Ch.R., Hismatov M.A. et al. The effect of di-isononyl phthalate on human reproductive function and in the experiment. [Vliyanie diizononilftalata na reproduktivnuyu funkciyu cheloveka i v eksperimente]. Problemy reproduktsii. 2022;28(5):55–64. (In Russ.). https://doi.org/10.17116/repro20222805155.

9. Yenigül N.N., Dilbaz S., Dilbaz B. et al. The effect of plastic bottled water consumption on outcomes of ICSI cycles undertaken for unexplained infertility. Reprod Biomed Online. 2021;43(1):91–9. https://doi.org/10.1016/j.rbmo.2021.04.010.

10. Moore-Ambriz T.R., Acuña-Hernández D.G., Ramos-Robles B. et al. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes. Toxicol Appl Pharmacol. 2015;289(3):507–14. https://doi.org/10.1016/j.taap.2015.10.010.

11. Ziv-Gal A., Wang W., Zhou C., Flaws J.A. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol Appl Pharmacol. 2015;284(3):354–62. https://doi.org/10.1016/j.taap.2015.03.003.

12. Rattan S., Brehm E., Gao L., Flaws J.A. Di(2-Ethylhexyl) Phthalate exposure during prenatal development causes adverse transgenerational effects on female fertility in mice. Toxicol Sci. 2018;163(2):420–9. https://doi.org/10.1093/toxsci/kfy042.

13. Yu Y., Yang Y., Zhao X. et al. Exposure to the mixture of organophosphorus pesticides is embryotoxic and teratogenic on gestational rats during the sensitive period. Environ Toxicol. 2017;32(1):139–46. https://doi.org/10.1002/tox.22219.

14. Johansson H.K.L., Christiansen S., Draskau M.K. et al. Classical toxicity endpoints in female rats are insensitive to the human endocrine disruptors diethylstilbestrol and ketoconazole. Reprod Toxicol. 2021;101:9–17. https://doi.org/10.1016/j.reprotox.2021.01.003.

15. Boland M.R., Fieder M., John L.H. et al. Female reproductive performance and maternal birth month: A comprehensive meta-analysis exploring multiple seasonal mechanisms. Sci Rep. 2020;10(1):555. https://doi.org/10.1038/s41598-019-57377-9.

16. Conforti A., Mascia M., Cioffi G. et al. Air pollution and female fertility: a systematic review of literature. Reprod Biol Endocrinol. 2018;16(1):117. https://doi.org/10.1186/s12958-018-0433-z.

17. Witkoś J., Błażejewski G., Gierach M. The Low Energy Availability in Females Questionnaire (LEAF-Q) as a useful tool to identify female triathletes at risk for menstrual disorders related to low energy availability. Nutrients. 2023;15(3):650. https://doi.org/10.3390/nu15030650.

18. Jurczewska J., Szostak-Węgierek D. The influence of diet on ovulation disorders in women – a narrative review. Nutrients. 2022;14(8):1556. https://doi.org/10.3390/nu14081556.

19. Kim K., Yisahak S.F., Nobles C.J. et al. Low intake of vegetable protein is associated with altered ovulatory function among healthy women of reproductive age. J Clin Endocrinol Metab. 2021;106(7):e2600–e2612. https://doi.org/10.1210/clinem/dgab179.

20. Toledo E., Lopez-del Burgo C., Ruiz-Zambrana A. et al. Dietary patterns and difficulty conceiving: a nested case-control study. Fertil Steril. 2011;96(5):1149–53. https://doi.org/10.1016/j.fertnstert.2011.08.034.

21. Rutkowska A.Z., Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril. 20165;106(4):948–58. https://doi.org/10.1016/j.fertnstert.2016.08.031.

22. Ahn J., Lee S.H., Park M.Y. et al. The association between long working hours and infertility. Saf Health Work. 2021;12(4):517–21. https://doi.org/10.1016/j.shaw.2021.07.005.

23. Caserta D., Bordi G., Ciardo F. et al. The influence of endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol. 2013;29(5):444–7. https://doi.org/10.3109/09513590.2012.758702.

24. Smarr M.M., Sundaram R., Honda M. et al. Urinary concentrations of parabens and other antimicrobial chemicals and their association with couples' fecundity. Environ Health Perspect. 2017;125(4):730–6. https://doi.org/10.1289/EHP189.

25. Gallo M.V., Ravenscroft J., Carpenter D.O., Frye C., Akwesasne Task Force On The Environment, Cook B., Schell L.M. Endocrine disrupting chemicals and ovulation: Is there a relationship? Environ Res. 2016;151:410–8. https://doi.org/10.1016/j.envres.2016.08.007.

26. Eskenazi B., Warner M., Marks A.R. et al. Serum dioxin concentrations and time to pregnancy. Epidemiology. 2010;21(2):224–31. https://doi.org/10.1097/EDE.0b013e3181cb8b95.

27. Hoover R.N., Hyer M., Pfeiffer R.M. et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365(14):1304–14. https://doi.org/10.1056/NEJMoa1013961.

28. Fabozzi G., Rebuzzini P., Cimadomo D. et al. Endocrine-disrupting chemicals, Gut microbiota, and human (in)fertility – it is time to consider the triad. Cells. 2022;11(21):3335. https://doi.org/10.3390/cells11213335.

29. Ziv-Gal A., Flaws J.A. Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril. 2016;106(4):827–56. https://doi.org/10.1016/j.fertnstert.2016.06.027.

30. Ding Z.M., Jiao X.F., Wu D. et al. Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem Biol Interact. 2017;278:222–9. https://doi.org/10.1016/j.cbi.2017.10.030.

31. Gannon A.M., Stämpfli M.R., Foster W.G. Cigarette smoke exposure leads to follicle loss via an alternative ovarian cell death pathway in a mouse model. Toxicol Sci. 2012;125(1):274–84. https://doi.org/10.1093/toxsci/kfr279.

32. Zhan S., Huang J. Effects of cigarette smoking on preimplantation embryo development. Adv Exp Med Biol. 2021;1300:137–50. https://doi.org/10.1007/978-981-33-4187-6_6.

33. Sobinoff A.P., Beckett E.L., Jarnicki A.G et al. Scrambled and fried: cigarette smoke exposure causes antral follicle destruction and oocyte dysfunction through oxidative stress. Toxicol Appl Pharmacol. 2013;271(2):156–67. https://doi.org/10.1016/j.taap.2013.05.009.

34. Jones R.L., Lang S.A., Kendziorski J.A. et al. Use of a mouse model of experimentally induced endometriosis to evaluate and compare the effects of bisphenol A and bisphenol AF exposure. Environ Health Perspect. 2018;126(12):127004. https://doi.org/10.1289/EHP3802.

35. Dash M., Dey A., Chattopadhyay S. Mitigation of arsenic driven utero-ovarian malfunction and changes of apoptotic gene expression by dietary NAC. Ecotoxicol Environ Saf. 2020;199:110675. https://doi.org/10.1016/j.ecoenv.2020.110675.

36. Gal A., Gedye K., Craig Z.R., Ziv-Gal A. Propylparaben inhibits mouse cultured antral follicle growth, alters steroidogenesis, and upregulates levels of cell-cycle and apoptosis regulators. Reprod Toxicol. 2019;89:100–6. https://doi.org/10.1016/j.reprotox.2019.07.009.

37. Bae J.S., Lee J.D., Song S.W. et al. Thirteen-week subcutaneous repeated dose toxicity study of butylparaben and its toxicokinetics in rats. Arch Toxicol. 2021;95(6):2037–50. https://doi.org/10.1007/s00204-021-03037-9.

38. Boberg J., Axelstad M., Svingen T. et al. Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben. Toxicol Sci. 2016;152(1):244–56. https://doi.org/10.1093/toxsci/kfw079.

39. Guerra M.T., Sanabria M., Cagliarani S.V. et al. Long-term effects of in utero and lactational exposure to butyl paraben in female rats. Environ Toxicol. 2017;32(3):776–88. https://doi.org/10.1002/tox.22277.

40. Jalouli M., Mofti A., Elnakady Y.A. et al. Allethrin promotes apoptosis and autophagy associated with the oxidative stress-related PI3K/AKT/mTOR signaling pathway in developing rat ovaries. Int J Mol Sci. 2022;23(12):6397. https://doi.org/10.3390/ijms23126397.

41. Boberg J., Johansson H.K.L., Franssen D. et al. Perinatal exposure to known endocrine disrupters alters ovarian development and systemic steroid hormone profile in rats. Toxicology. 2021;458:152821. https://doi.org/10.1016/j.tox.2021.152821.

42. Paulose T., Tannenbaum L.V., Borgeest C., Flaws J.A. Methoxychlor-induced ovarian follicle toxicity in mice: dose and exposure duration-dependent effects. Birth Defects Res B Dev Reprod Toxicol. 2012;95(3):219–24. https://doi.org/10.1002/bdrb.21007.

43. Ren X., Li R., Liu J. et al. Effects of glyphosate on the ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their fetuses. Environ Pollut. 2018;243(Pt B):833–41. https://doi.org/10.1016/j.envpol.2018.09.049.

44. Meling D.D., Warner G.R., Szumski J.R. et al. The effects of a phthalate metabolite mixture on antral follicle growth and sex steroid synthesis in mice. Toxicol Appl Pharmacol. 2020;388:114875. https://doi.org/10.1016/j.taap.2019.114875.

45. Zhou Y.J., Wang X.D., Xiao S. et al. Exposure to beta-cypermethrin impairs the reproductive function of female mice. Regul Toxicol Pharmacol. 2018;95:385–94. https://doi.org/10.1016/j.yrtph.2018.04.015.

46. Boberg J., Johansson H.K.L., Franssen D. et al. Exposure to the pesticides linuron, dimethomorph and imazalil alters steroid hormone profiles and gene expression in developing rat ovaries. Toxicol Lett. 2023;373:114–22. https://doi.org/10.1016/j.toxlet.2022.11.010.

47. Jaroenporn S., Malaivijitnond S., Wattanasirmkit K. et al. Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to Pueraria mirifica herb. J Reprod Dev. 2007;53(5):995–1005. https://doi.org/10.1262/jrd.18151.

48. Roy N., Mascolo E., Lazzaretti C. et al. Endocrine disruption of the follicle-stimulating hormone receptor signaling during the human antral follicle growth. Front Endocrinol. 2021;12:791763. https://doi.org/10.3389/fendo.2021.791763.

49. Rasmussen L.M., Sen N., Vera J.C. et al. Effects of in vitro exposure to dibutyl phthalate, mono-butyl phthalate, and acetyl tributyl citrate on ovarian antral follicle growth and viability. Biol Reprod. 2017;96(5):1105–17. https://doi.org/10.1095/biolreprod.116.144691.

50. Adir M., Combelles C.M.H., Mansur A. et al. Dibutyl phthalate impairs steroidogenesis and a subset of LH-dependent genes in cultured human mural granulosa cell in vitro. Reprod Toxicol. 2017;69:13–8. https://doi.org/10.1016/j.reprotox.2016.12.007.

51. Holman R.R., Bethel M.A., Chan J.C. et al.; ACE Study Group. Rationale for and design of the Acarbose Cardiovascular Evaluation (ACE) trial. Am Heart J. 2014;168(1):23–9.e2. https://doi.org/10.1016/j.ahj.2014.03.021.

52. Vyas A.K., Veiga-Lopez A., Ye W. et al. Developmental programming: Sex-specific programming of growth upon prenatal bisphenol A exposure. J Appl Toxicol. 2019;39(11):1516–31. https://doi.org/10.1002/jat.3836.

53. Pan X., Wang X., Sun Y. et al. Inhibitory effects of preimplantation exposure to bisphenol-A on blastocyst development and implantation. Int J Clin Exp Med. 2015;8(6):8720–9.

54. Li Q., Davila J., Kannan A. et al. Chronic exposure to bisphenol A affects uterine function during early pregnancy in mice. Endocrinology. 2016;157(5):1764–74. https://doi.org/10.1210/en.2015-2031.

55. Varayoud J., Ramos J.G., Bosquiazzo V.L. et al. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology. 2011;152(3):1101–11. https://doi.org/10.1210/en.2009-1037.

56. Fahrenkopf A., Wagner C.K. Bisphenol A (BPA) induces progesterone receptor expression in an estrogen receptor α-dependent manner in perinatal brain. Neurotoxicol Teratol. 2020;78:106864. https://doi.org/10.1016/j.ntt.2020.106864.

57. Crawford B.R., Decatanzaro D. Disruption of blastocyst implantation by triclosan in mice: impacts of repeated and acute doses and combination with bisphenol-A. Reprod Toxicol. 2012;34(4):607–13. https://doi.org/10.1016/j.reprotox.2012.09.008.

58. Yoshizawa K., Brix A.E., Sells D.M. et al. Reproductive lesions in female Harlan Sprague-Dawley rats following two-year oral treatment with dioxin and dioxin-like compounds. Toxicol Pathol. 2009;37(7):921–37. https://doi.org/10.1177/0192623309351721.

59. Li B., Liu H.Y., Dai L.J. et al. The early embryo loss caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin may be related to the accumulation of this compound in the uterus. Reprod Toxicol. 2006;21(3):301–6. https://doi.org/10.1016/j.reprotox.2005.09.008.

60. Lavogina D., Visser N., Samuel K. et al. Endocrine disrupting chemicals interfere with decidualization of human primary endometrial stromal cells in vitro. Front Endocrinol. 2022;13:903505. https://doi.org/10.3389/fendo.2022.903505.

61. Tsang H., Cheung T.Y., Kodithuwakku S.P et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway. Reprod Toxicol. 2012;33(1):60–6. https://doi.org/10.1016/j.reprotox.2011.11.002.

62. Zhao M., Zhang H., Waters T.H.B. et al. The effects of daily meteorological perturbation on pregnancy outcome: follow-up of a cohort of young women undergoing IVF treatment. Environ Health. 2019;18(1):103. https://doi.org/10.1186/s12940-019-0538-7.

63. Goldman R.H., Farland L.V., Thomas A.M. et al. The combined impact of maternal age and body mass index on cumulative live birth following in vitro fertilization. Am J Obstet Gynecol. 2019;221(6):617.e1–617.e13. https://doi.org/10.1016/j.ajog.2019.05.043.

64. Vujkovic M., de Vries J.H., Lindemans J. et al. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil Steril. 2010;94(6):2096–101. https://doi.org/10.1016/j.fertnstert.2009.12.079.

65. Karayiannis D., Kontogianni M.D., Mendorou C. et al. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum Reprod. 2018;33(3):494–502. https://doi.org/10.1093/humrep/dey003.

66. Sun H., Lin Y., Lin D. et al. Mediterranean diet improves embryo yield in IVF: a prospective cohort study. Reprod Biol Endocrinol. 2019;17(1):73. https://doi.org/10.1186/s12958-019-0520-9.

67. Benedict M.D., Missmer S.A., Vahratian A. et al. Secondhand tobacco smoke exposure is associated with increased risk of failed implantation and reduced IVF success. Hum Reprod. 2011;26(9):2525–31. https://doi.org/10.1093/humrep/der226.

68. Enikeyev D.A., Idrisova L.T., Enikeyev O.A. et al. Сomparison of hazard and toxicity of tobacco cigarettes, electronic nicotine delivery systems, and tobacco heating systems (IQOS) (review). [Sravnenie opasnosti i toksichnosti tabachnyh sigaret, elektronnyh sistem dostavki nikotina i sistem nagrevaniya tabaka (IQOS) (obzor)]. Patogenez. 2019;17(3):25–33 (In Russ.). https://doi.org/10.25557/2310-0435.2019.03.25-33.

69. Frappier J., Martinaud A., Barberet J. et al. Effect of paternal smoking on pre-implantation embryonic development: a prospective cohort study. Reprod Fertil Dev. 2022;34(15):971–9.

70. Thaker R., Mishra V., Gor M. et al. The role of stimulation protocol, number of oocytes retrieved with respect to follicular fluid oxidative stress and IVF outcome. Hum Fertil. 2020;23(1):23–31. https://doi.org/10.1080/14647273.2018.1551630.

71. Ehrlich S., Williams P.L., Missmer S.A. et al. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012;27(12):3583–92. https://doi.org/10.1093/humrep/des328.

72. Mínguez-Alarcón L., Gaskins A.J., Chiu Y.H. et al.; EARTH Study Team. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum Reprod. 2015;30(9):2120–8. https://doi.org/10.1093/humrep/dev183.

73. Mínguez-Alarcón L., Messerlian C., Bellavia A. et al.; Earth Study Team. Urinary concentrations of bisphenol A, parabens and phthalate metabolite mixtures in relation to reproductive success among women undergoing in vitro fertilization. Environ Int. 2019;126:355–62. https://doi.org/10.1016/j.envint.2019.02.025.

74. Wright D.L., Afeiche M.C., Ehrlich S. et al. Hair mercury concentrations and in vitro fertilization (IVF) outcomes among women from a fertility clinic. Reprod Toxicol. 2015;51:125–32. https://doi.org/10.1016/j.reprotox.2015.01.003.

75. Mínguez-Alarcón L., Chiu Y.H., Messerlian C. et al.; EARTH Study Team. Urinary paraben concentrations and in vitro fertilization outcomes among women from a fertility clinic. Fertil Steril. 2016;105(3):714–21. https://doi.org/10.1016/j.fertnstert.2015.11.021.

76. Bloom M.S., Fujimoto V.Y., Storm R. et al. Persistent organic pollutants (POPs) in human follicular fluid and in vitro fertilization outcomes, a pilot study. Reprod Toxicol. 2017;67:165–73. https://doi.org/10.1016/j.reprotox.2017.01.004.

77. Hua R., Zhou Y., Wu B. et al. Urinary triclosan concentrations and early outcomes of in vitro fertilization-embryo transfer. Reproduction. 2017;153(3):319–25. https://doi.org/10.1530/REP-16-0501.

78. Yang L., Baumann C., De La Fuente R., Viveiros M.M. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds. Reproduction. 2020;159(4):383–96. https://doi.org/10.1530/REP-19-0494.

79. Du Y.-Y., Fang Y.-L., Wang Y.-X. et al. Follicular fluid and urinary concentrations of phthalate metabolites among infertile women and associations with in vitro fertilization parameters. Reprod Toxicol. 2016;61:142–50. https://doi.org/10.1016/j.reprotox.2016.04.005.

80. Hauser R., Gaskins A.J., Souter I. et al.; EARTH Study Team. Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the EARTH Study. Environ Health Perspect. 2016;124(6):831–9. https://doi.org/10.1289/ehp.1509760.

81. Bellavia A., Zou R., Björvang R.D. et al. Association between chemical mixtures and female fertility in women undergoing assisted reproduction in Sweden and Estonia. Environ Res. 2023;216(Pt 1):114447. https://doi.org/10.1016/j.envres.2022.114447.

82. Cavallini A., Lippolis C., Vacca M. et al. The effects of chronic lifelong activation of the AHR pathway by industrial chemical pollutants on female human reproduction. PLoS One. 2016;11(3):e0152181. https://doi.org/10.1371/journal.pone.0152181.

83. Shen J., Kang Q., Mao Y. et al. Urinary bisphenol A concentration is correlated with poorer oocyte retrieval and embryo implantation outcomes in patients with tubal factor infertility undergoing in vitro fertilisation. Ecotoxicol Environ Saf. 2020;187:109816. https://doi.org/10.1016/j.ecoenv.2019.109816.

84. Sabry R., Saleh A.C., Stalker L. et al. Effects of bisphenol A and bisphenol S on microRNA expression during bovine (Bos taurus) oocyte maturation and early embryo development. Reprod Toxicol. 2021;99:96–108. https://doi.org/10.1016/j.reprotox.2020.12.001.

85. Berger A., Ziv-Gal A., Cudiamat J. et al. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod Toxicol. 2016;60:39–52. https://doi.org/10.1016/j.reprotox.2015.12.004.

86. Pocar P., Fiandanese N., Berrini A. et al. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicol Appl Pharmacol. 2017;322:113–21. https://doi.org/10.1016/j.taap.2017.03.008.

87. Zhou C., Gao L., Flaws J.A. Exposure to an environmentally relevant phthalate mixture causes transgenerational effects on female reproduction in mice. Endocrinology. 2017;158(6):1739–54. https://doi.org/10.1210/en.2017-00100.

88. Nilsson E., Larsen G., Manikkam M. et al. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7(5):e36129. https://doi.org/10.1371/journal.pone.0036129.

89. Bruner-Tran K.L., Ding T., Yeoman K.B. et al. Developmental exposure of mice to dioxin promotes transgenerational testicular inflammation and an increased risk of preterm birth in unexposed mating partners. PLoS One. 2014;9(8):e105084. https://doi.org/10.1371/journal.pone.0105084.

90. Wautier A., Tournaire M., Devouche E. et al. Genital tract and reproductive characteristics in daughters of women and men prenatally exposed to diethylstilbestrol (DES). Therapie. 2020;75(5):439–48. https://doi.org/10.1016/j.therap.2019.10.004.


What is already known about this subject?

► A significant number of chemicals found in the environment exert properties disrupting human endocrine system (endocrine disrupting chemicals, EDC).

► Many cases of idiopathic infertility are associated with EDC or direct and/or indirect effects of environmental factors.

► A negative correlation between EDC levels and reproductive function was found in both men and women.

What are the new findings?

► The combination of increased rainfall and high altitude during childbirth may have a positive effect on female fertility. Exposure to electromagnetic fields increases idiopathic infertility prevalence.

► Еxposure to heavy metals is associated with an increased risk of infertility during normal pregnancy and decreased number of eggs extraction during artificial insemination, whereas pesticide exposure reduces the likelihood of pregnancy and live birth.

► Exposure to bisphenol A (BPA) and fluorinated BPA (BPАF) has detrimental effects on viability of ovarian follicles, their function and maturation, lowering the number of eggs extracted, reducing embryos quality and chances for successful implantation.

How might it impact on clinical practice in the foreseeable future?

► Understanding presicely which environmental factors can negatively affect fertility and fetal development will help creating recommendations to alleviate their impact on a woman's body.

► Doctors will be able to take into account not only the genetic and physiological patients’characteristics, but also the environmental impact on their health. This may lead to development of new methods for treatment and rehabilitation aimed at restoring women's reproductive health.

► Understanding an impact of the environment on women's reproductive health can help creating a healthier and safer environment relying on development and implementation of environmental standards.

Review

For citations:


Zhirnov I.A., Nazmieva K.A., Khabibullina A.I., Ilyasova L.A., Saidmursalova N.S., Demisheva R.R., Alikhadzhieva P.E., Soltagereeva A.Kh., Golovnya A.A., Kakhramonova A.V., Dzhalilov I.M., Galimova U.U. The influence of environmental factors on woman's reproductive health. Obstetrics, Gynecology and Reproduction. 2024;18(6):858-873. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.564

Views: 968


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)