Coenzyme Q10 and embryonic development: a potential role in reproductive medicine
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.541
Abstract
Maternal mitochondria provide energy to the embryo through oxidative phosphorylation before blastocyst implantation, where intracellular energy is mainly supplied by glycolysis. Thus, it is obvious that mitochondria play a crucial role in providing energy for embryogenesis. Coenzyme Q10 (CoQ10) is a powerful endogenous membrane-localized antioxidant that protects circulating lipoproteins from lipid peroxidation. The results of several recent clinical studies have shown that exogenous CoQ10 supplements exert antioxidant effects and may be a potential therapy to reduce oxidative stress. CoQ10 deficiency increases the risk of impaired embryonic development; however, this relationship remains unclear. Given that CoQ10 level is influenced by enzymes involved in its synthesis, it is difficult to say whether the disorders are caused by CoQ10 deficiency or directly result from defects in the target gene. It has been shown that in the absence of CoQ10, ATP synthesis decreases in parallel with increased oxidative stress in mitochondria, two biological events which affect embryonic development. The review highlights the importance of CoQ10 as an antioxidant for improving egg quality, and also emphasizes its key role in embryonic development. It is necessary to conduct further studies aimed at studying metabolic changes during embryogenesis, as well as the mechanism of CoQ10 effects.
About the Authors
A. U. KhamadyanovaRussian Federation
Aida U. Khamadyanova, MD, PhD
3 Lenin Str., Ufa 450008
R. M. Mannanov
Russian Federation
Ruslan M. Mannanov
3 Lenin Str., Ufa 450008
D. M. Smakova
Russian Federation
Dina M. Smakova
3 Lenin Str., Ufa 450008
F. I. Musaeva
Russian Federation
Fatima I. Musaeva
121 Bakinskaya Str., Astrakhan 414000
D. G. Bedelov
Russian Federation
David G. Bedelov
121 Bakinskaya Str., Astrakhan 414000
A. E. Ibragimov
Russian Federation
Allakhverdi E. Ibragimov
121 Bakinskaya Str., Astrakhan 414000
A. A. Rusinova
Russian Federation
Anna A. Rusinova
2 Litovskaya Str., Saint Petersburg 194100
M. M. Salikhova
Russian Federation
Margarita M. Salikhova
3 Lenin Str., Ufa 450008
S. V. Shtukaturova
Russian Federation
Svetlana V. Shtukaturova
10 Studencheskaya Str., Voronezh 394036
T. V. Doroshenko
Russian Federation
Tatyana V. Doroshenko
4 Mitrofana Sedina Str., Krasnodar 350063
M. V. Fattakhova
Russian Federation
Maya V. Fattakhova
3 Lenin Str., Ufa 450008
M. K. Rakhimova
Russian Federation
Mizhgona K. Rakhimova
3 Lenin Str., Ufa 450008
L. R. Marinova
Russian Federation
Liliya R. Marinova
1 Ostrovityanova Str., Moscow 117997
References
1. Bashmakova N.V., Tret'iakova T.B., Demchenko N.S. Cytogenetic disorders in embryos during non-developing pregnancy. [Citogeneticheskie narusheniya u embriona pri nerazvivayushchejsya beremennosti]. Rossijskij vestnik akushera-ginekologa. 2013;13(4):18–21. (In Russ.).
2. Novikova N.Yu., Tsibizova V.I., Pervunina T.M., Malushko A.V. Nutritionology and lifestyle during pregnancy. [Nutriciologiya i obraz zhizni pri beremennosti]. Rossijskij zhurnal personalizirovannoj mediciny. 2023;3(2):82–92. (In Russ.). https://doi.org/10.18705/2782-3806-2023-3-2-82-92.
3. Svyatova G.S., Berezina G.M., Murtazaliyeva A.V. Genetic aspects of the idiopathic form of habitual miscarriage. [Geneticheskie aspekty idiopaticheskoj formy privychnogo nevynashivaniya beremennosti]. Medicinskaya genetika. 2020;19(11):83–4. (In Russ.). https://doi.org/10.25557/2073-7998.2020.11.83-84.
4. Adamyan L.V., Gevorgyan A.P. Autophagy as a new link in the mechanism of development of disorders of the reproductive system (literature review). [Autofagiya kak novoe zveno v mekhanizme razvitiya narushenij reproduktivnoj sistemy (obzor literatury)]. Problemy reprodukcii. 2019;25(5):6–14.
5. Zhao J., Yao K., Yu H. et al. Metabolic remodelling during early mouse embryo development. Nat Metab. 2021;3(10):1372–84. https://doi.org/10.1038/s42255-021-00464-x.
6. Motiei M., Vaculikova K., Cela A. et al. Non-invasive human embryo metabolic assessment as a developmental criterion. J Clin Med. 2020;9(12):4094. https://doi.org/10.3390/jcm9124094.
7. Ayer A., Fazakerley D.J., Suarna C. et al. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol. 2021;46:102127. https://doi.org/10.1016/j.redox.2021.102127.
8. You X., Ryu M.J., Cho E. et al. Embryonic Expression of nrasG 12 D leads to embryonic lethality and cardiac defects. Front Cell Dev Biol. 2021;9:633661. https://doi.org/10.3389/fcell.2021.633661.
9. Wu Y., Yang D., Chen G.Y. Targeted disruption of Rab1a causes early embryonic lethality. Int J Mol Med. 2022;49(4):46. https://doi.org/10.3892/ijmm.2022.5101.
10. Liang R., Chen X., Zhang Y. et al. Clinical features and gene variation analysis of COQ8B nephropathy: Report of seven cases. Front Pediatr. 2023;10:1030191. https://doi.org/10.3389/fped.2022.1030191.
11. Somnay Y.R., Wang A., Griffiths K.K., Levy R.J. Altered brown adipose tissue mitochondrial function in newborn fragile X syndrome mice. Mitochondrion. 2022;65:1–10. https://doi.org/10.1016/j.mito.2022.04.003.
12. Guerra R.M., Pagliarini D.J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci. 2023;48(5):463–76. https://doi.org/10.1016/j.tibs.2022.12.006.
13. Gutierrez-Mariscal F.M., Arenas-de Larriva A.P., Limia-Perez L. et al. Coenzyme Q10 supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci. 2020;21(21):7870. https://doi.org/10.3390/ijms21217870.
14. Navas P., Sanz A. Editorial: "Mitochondrial coenzyme Q homeostasis: Signalling, respiratory chain stability and diseases". Free Radic Biol Med. 2021;169:12–3. https://doi.org/10.1016/j.freeradbiomed.2021.04.005.
15. Alcázar-Fabra M., Rodríguez-Sánchez F., Trevisson E., Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med. 2021;167:141–80. https://doi.org/10.1016/j.freeradbiomed.2021.02.046.
16. Zhao M., Tian Z., Zhao D. et al. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: a national cross-sectional study. Food Funct. 2023;14(21):9815–24. https://doi.org/10.1039/d3fo00978e.
17. Gromova O.A., Torshin I.Yu. Molecular pharmacology of coenzyme Q10 in the context of treatment of hyperlipidemic conditions. [Molekulyarnaya farmakologiya koenzima Q10 v kontekste lecheniya giperlipidemicheskih sostoyanij]. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(2):345–57. (In Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.186.
18. Lapuente-Brun E., Moreno-Loshuertos R., Acín-Pérez R. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 2013;340(6140):1567–70. https://doi.org/10.1126/science.1230381.
19. Griffiths K.K., Wang A., Levy R.J. Assessment of open probability of the mitochondrial permeability transition pore in the setting of coenzyme Q excess. J Vis Exp. 2022;(184). https://doi.org/10.3791/63646.
20. Oh J.N., Lee M., Choe G.C. et al. The number of primitive endoderm cells in the inner cell mass is regulated by platelet-derived growth factor signaling in porcine preimplantation embryos. Anim Biosci. 2023;36(8):1180–9. https://doi.org/10.5713/ab.22.0481.
21. Gauster M., Moser G., Wernitznig S. et al. Early human trophoblast development: from morphology to function. Cell Mol Life Sci. 2022;79(6):345. https://doi.org/10.1007/s00018-022-04377-0.
22. Wardle F.C. Mesoderm differentiation in vertebrate development and regenerative medicine. Semin Cell Dev Biol. 2022;127:1–2. https://doi.org/10.1016/j.semcdb.2022.02.014.
23. Adhikari D., Lee I.W., Yuen W.S., Carroll J. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol Reprod. 2022;106(2):366–77. https://doi.org/10.1093/biolre/ioac024.
24. Nepsha O.S., Kulakova E.V., Ekimov A.N. et al. Value of embryonic mitochondrial DNA in predicting the effectiveness of assisted reproductive technologies. [Ispol'zovanie mitohondrial'noj DNK embrionov v kachestva prediktora effektivnosti programm vspomogatel'nyh reproduktivnyh tekhnologij]. Akusherstvo i ginekologiya. 2021;11:125–34. (In Russ.). https://doi.org/10.18565/aig.2021.11.125-134.
25. Kang M.H., Kim Y.J., Lee J.H. Mitochondria in reproduction. Clin Exp Reprod Med. 2023;50(1):1–11. https://doi.org/10.5653/cerm.2022.05659.
26. Czernik M., Winiarczyk D., Sampino S. et al. Mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos. Sci Rep. 2022;12(1):16152. https://doi.org/10.1038/s41598-022-20374-6.
27. Marchante M., Ramirez-Martin N., Buigues A. et al. Deciphering reproductive aging in women using a NOD/SCID mouse model for distinct physiological ovarian phenotypes. Aging (Albany NY). 2023;15(20):10856–74. https://doi.org/10.18632/aging.205086.
28. Adamyan L.V., Sibirskaya E.V., Shcherina A.V. Pathogenetic aspects of premature ovarian failure. [Patogeneticheskie aspekty prezhdevremennoj nedostatochnosti yaichnikov]. Problemy reprodukcii. 2021;27(1):6–12. (In Russ.).
29. van der Reest J., Nardini Cecchino G., Haigis M.C., Kordowitzki P. Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 2021;70:101378. https://doi.org/10.1016/j.arr.2021.101378.
30. Jiang Z., Shen H. Mitochondria: emerging therapeutic strategies for oocyte rescue. Reprod Sci. 2022;29(3):711–22. https://doi.org/10.1007/s43032-021-00523-4.
31. Hudson G., Takeda Y., Herbert M. Reversion after replacement of mitochondrial DNA. Nature. 2019;574(7778):8–11. https://doi.org/10.1038/s41586-019-1623-3.
32. Blashkiv T.V., Shepel' A.A., Voznesenskaia T.Iu. Review of the cumulus cell gene expression during ovulation and fertilization. [Ekspressiya genov kletkami kumulyusnogo okruzheniya oocita v period ovulyacii i oplodotvoreniya (obzor literatury)]. Problemy reprodukcii. 2014;(1):55–8.
33. Hu Y., Zhang R., Zhang S. et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res. 2023;16(1):225. https://doi.org/10.1186/s13048-023-01291-2.
34. Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65. https://doi.org/10.1093/biolre/ioab241.
35. Krawczyk K., Marynowicz W., Pich K. et al. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev. 2023;35(3):294–305. https://doi.org/10.1071/RD21326.
36. Yu L., Liu M., Xu S. et al. Follicular fluid steroid and gonadotropic hormone levels and mitochondrial function from exosomes predict embryonic development. Front Endocrinol (Lausanne). 2022;13:1025523. https://doi.org/10.3389/fendo.2022.1025523.
37. Gasmi A., Bjørklund G., Mujawdiya P.K. et al. Coenzyme Q10 in aging and disease. Crit Rev Food Sci Nutr. 2024;64(12):3907–19. https://doi.org/10.1080/10408398.2022.2137724.
38. Yang C.X., Liu S., Miao J.K. et al. CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology. 2021;159:77–86. https://doi.org/10.1016/j.theriogenology.2020.10.009.
39. Brown A.M., McCarthy H.E. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. Hum Fertil (Camb). 2023;26(6):1544–52. https://doi.org/10.1080/14647273.2023.2194554.
40. Yang J., Feng T., Li S. et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod Biol Endocrinol. 2020;18(1):74. https://doi.org/10.1186/s12958-020-00631-x.
41. Giannubilo S.R., Orlando P., Silvestri S. et al. CoQ10 Supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants (Basel). 2018;7(10):141. https://doi.org/10.3390/antiox7100141.
42. Lee C.H., Kang M.K., Sohn D.H. et al. Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture. Zygote. 2022;30(2):249–57. https://doi.org/10.1017/S0967199421000617.
43. Yang L., Wang H., Song S. et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach. Front Endocrinol (Lausanne). 2022;13:813772. https://doi.org/10.3389/fendo.2022.813772 .
44. Heydarnejad A., Ostadhosseini S., Varnosfaderani S.R. et al. Supplementation of maturation medium with CoQ10 enhances developmental competence of ovine oocytes through improvement of mitochondrial function. Mol Reprod Dev. 2019;86(7):812–24. https://doi.org/10.1002/mrd.23159.
45. Ruiz-Conca M., Gardela J., Mogas T. et al. Apoptosis and glucocorticoid-related genes mRNA expression is modulated by coenzyme Q10 supplementation during in vitro maturation and vitrification of bovine oocytes and cumulus cells. Theriogenology. 2022;192:62–72. https://doi.org/10.1016/j.theriogenology.2022.08.030.
46. Gendelman M., Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol Reprod. 2012;87(5):118. https://doi.org/10.1095/biolreprod.112.101881.
47. Miao Y., Cui Z., Gao Q. et al. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020;32(5):107987. https://doi.org/10.1016/j.celrep.2020.107987.
48. Nikalayevich E., Terret M.E. Meiosis: Actin and microtubule networks drive chromosome clustering in oocytes. Curr Biol. 2023;33(7):272–4. https://doi.org/10.1016/j.cub.2023.02.061.
49. Miao Y., Zhou C., Cui Z. et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37. https://doi.org/10.1096/fj.201700908R.
50. Zhang M., Shi Yang X., Zhang Y. et al. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med. 2019;143:84–94. https://doi.org/10.1016/j.freeradbiomed.2019.08.002.
51. Shaw E., Talwadekar M., Rashida Z. et al. Anabolic SIRT4 exerts retrograde control over TORC1 signaling by glutamine sparing in the mitochondria. Mol Cell Biol. 2020;40(2):e00212–19. https://doi.org/10.1128/MCB.00212-19.
52. He L., Liu Q., Cheng J. et al. SIRT4 in ageing. Biogerontology. 2023;24(3):347–62. https://doi.org/10.1007/s10522-023-10022-5.
53. Xing X., Zhang J., Zhang J. et al. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol. 2022;15(1):190–203. https://doi.org/10.2174/1874467214666210420112819.
54. Ben-Meir A., Burstein E., Borrego-Alvarez A. et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95. https://doi.org/10.1111/acel.12368.
55. Del Bianco D., Gentile R., Sallicandro L. et al. Electro-metabolic coupling of cumulus-oocyte complex. Int J Mol Sci. 2024;25(10):5349. https://doi.org/10.3390/ijms25105349.
56. Ben-Meir A., Kim K., McQuaid R. et al. Co-enzyme Q10 supplementation rescues cumulus cells dysfunction in a maternal aging model. Antioxidants (Basel). 2019;8(3):58. https://doi.org/10.3390/antiox8030058.
57. Bellusci M., García-Silva M.T., Martínez de Aragón A., Martín M.A. Distal phalangeal erythema in an infant with biallelic PDSS1 mutations: expanding the phenotype of primary Coenzyme Q10 deficiency. JIMD Rep. 2021;62(1):3–5. https://doi.org/10.1002/jmd2.12216.
58. Li M., Yue Z., Lin H. et al. COQ2 mutation associated isolated nephropathy in two siblings from a Chinese pedigree. Ren Fail. 2021;43(1):97–101. https://doi.org/10.1080/0886022X.2020.1864402.
59. Laugwitz L., Seibt A., Herebian D. et al. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet. 2022;59(9):878–87. https://doi.org/10.1136/jmedgenet-2021-107729.
60. Wang N., Zheng Y., Zhang L. et al. A family segregating lethal primary coenzyme Q10 deficiency due to two novel COQ6 variants. Front Genet. 2022;12:811833. https://doi.org/10.3389/fgene.2021.811833.
61. Olgac A., Öztoprak Ü., Kasapkara C.S. et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab. 2020;33(1):165–70. https://doi.org/10.1515/jpem-2019-0245.
62. Howden S.E., Vanslambrouck J.M., Wilson S.B. et al. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep. 2019;20(4):e47483. https://doi.org/10.15252/embr.201847483.
63. Drovandi S., Lipska-Ziętkiewicz B.S., Ozaltin F. et al.; PodoNet Consortium; mitoNET Consortium; CCGKDD Consortium; Schaefer F. Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney Int. 2022;102(3):592–603. https://doi.org/10.1016/j.kint.2022.02.040.
64. Zhai S.B., Zhang L., Sun B.C. et al. Early-onset COQ8B (ADCK4) glomerulopathy in a child with isolated proteinuria: a case report and literature review. BMC Nephrol. 2020;21(1):406. https://doi.org/10.1186/s12882-020-02038-7.
65. Stańczyk M., Bałasz-Chmielewska I., Lipska-Ziętkiewicz B., Tkaczyk M. CoQ10-related sustained remission of proteinuria in a child with COQ6 glomerulopathy – a case report. Pediatr Nephrol. 2018;33(12):2383–7. https://doi.org/10.1007/s00467-018-4083-3.
66. Suciu S.K., Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol. 2021;110:34–42. https://doi.org/10.1016/j.semcdb.2020.07.014.
67. Zoghbi J.F., Licznerski P., Yang M. et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020;34(6):7404–26. https://doi.org/10.1096/fj.202000283RR.
68. Muigg V., Maier M.I., Kuenzli E., Neumayr A. Delayed cerebellar ataxia, a rare post-malaria neurological complication: Case report and review of the literature. Travel Med Infect Dis. 2021;44:102177. https://doi.org/10.1016/j.tmaid.2021.102177.
69. Monfrini E., Pesini A., Biella F. et al. Whole-exome sequencing study of fibroblasts derived from patients with cerebellar ataxia referred to investigate CoQ10 deficiency. Neurol Genet. 2023;9(2):e200058. https://doi.org/10.1212/NXG.0000000000200058.
70. Rius R., Bennett N.K., Bhattacharya K. et al. Biallelic pathogenic variants in COX11 are associated with an infantile-onset mitochondrial encephalopathy. Hum Mutat. 2022;43(12):1970–8. https://doi.org/10.1002/humu.24453.
71. Justine Perrin R., Rousset-Rouvière C., Garaix F. et al. COQ6 mutation in patients with nephrotic syndrome, sensorineural deafness, and optic atrophy. JIMD Rep. 2020;54(1):37–44. https://doi.org/10.1002/jmd2.12068.
72. Turnis M.E., Kaminska E., Smith K.H. et al. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood. 2021;137(14):1945–58. https://doi.org/10.1182/blood.2020006916.
73. Martinez P.A., Li R., Ramanathan H.N. et al. Smad2/3-pathway ligand trap luspatercept enhances erythroid differentiation in murine β-thalassaemia by increasing GATA-1 availability. J Cell Mol Med. 2020;24(11):6162–77. https://doi.org/10.1111/jcmm.15243.
74. Martell D.J., Merens H.E., Caulier A. et al. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell. 2023;58(20):2112–2127.e4. https://doi.org/10.1016/j.devcel.2023.07.018.
75. Rossmann M.P., Hoi K., Chan V. et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science. 2021;372(6543):716–21. https://doi.org/10.1126/science.aaz2740.
76. Drakhlis L., Biswanath S., Farr C.M. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol. 2021;39(6):737–46. https://doi.org/10.1038/s41587-021-00815-9.
77. Yan A., Liu Z., Song L. et al. Idebenone Alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson's disease mice. Front Cell Neurosci. 2019;12:529. https://doi.org/10.3389/fncel.2018.00529.
78. Robichaux D.J., Harata M., Murphy E., Karch J. Mitochondrial permeability transition pore-dependent necrosis. J Mol Cell Cardiol. 2023;174:47–55. https://doi.org/10.1016/j.yjmcc.2022.11.003.
79. Barajas M., Wang A., Griffiths K.K. et al. The newborn Fmr1 knockout mouse: a novel model of excess ubiquinone and closed mitochondrial permeability transition pore in the developing heart. Pediatr Res. 2021;89(3):456–63. https://doi.org/10.1038/s41390-020-1064-6.
80. Wang Y., Hekimi S. The CoQ biosynthetic di-iron carboxylate hydroxylase COQ7 is inhibited by in vivo metalation with manganese but remains functional by metalation with cobalt. MicroPubl Biol. 2022;2022:10.17912/micropub.biology.000635. https://doi.org/10.17912/micropub.biology.000635.
81. Smith A.C., Ito Y., Ahmed A. et al.; Care4Rare Canada Consortium. A family segregating lethal neonatal coenzyme Q10 deficiency caused by mutations in COQ9. J Inherit Metab Dis. 2018;41(4):719–29. https://doi.org/10.1007/s10545-017-0122-7.
82. Danhauser K., Herebian D., Haack T.B. et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet. 2016;24(3):450–4. https://doi.org/10.1038/ejhg.2015.133.
83. Teran E., Hernández I., Tana L. et al. Mitochondria and coenzyme Q10 in the pathogenesis of preeclampsia. Front Physiol. 2018;9:1561. https://doi.org/10.3389/fphys.2018.01561.
84. Budani M.C., Tiboni G.M. Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos. Antioxidants (Basel). 2020;9(7):612. https://doi.org/10.3390/antiox9070612.
What is already known about this subject?
► Coenzyme Q10 (СоQ10) plays an important role in embryonic development, participating in oxidative phosphorylation and electron transfer in mitochondria. It is a key link in the ATP synthesis chain, providing energy to cells in developing organism.
► СоQ10 exerts antioxidant properties, protecting cells from the harmful effects of free radicals, which is primarily important for embryogenesis when tissues and organs are at the formation stage.
► Exogenous CoQ10 supplements have antioxidant effects and may be a potential therapy to alleviate oxidative stress.
What are the new findings?
► In the absence of CoQ10, ATP synthesis declines in parallel with elevated oxidative stress in mitochondria, two biological events that affect embryonic development.
► CoQ10 deficiency markedly increases the risk of impaired embryonic development.
► Excessive CoQ10 level can lead to altered embryonic development.
How might it impact on clinical practice in the foreseeable future?
► Normalization of CoQ10 level will help to avoid developmental abnormalities and associated termination of pregnancy.
► CoQ10 reduces the frequency of preeclampsia by participating in the formation of the placenta and can also improve the quality of eggs and gametes and reduce other developmental abnormalities.
Review
For citations:
Khamadyanova A.U., Mannanov R.M., Smakova D.M., Musaeva F.I., Bedelov D.G., Ibragimov A.E., Rusinova A.A., Salikhova M.M., Shtukaturova S.V., Doroshenko T.V., Fattakhova M.V., Rakhimova M.K., Marinova L.R. Coenzyme Q10 and embryonic development: a potential role in reproductive medicine. Obstetrics, Gynecology and Reproduction. 2024;18(5):720-734. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.541

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.