Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Clinical significance of determining neutrophil extracellular traps in women with oncogynecological neoplasms

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.447

Abstract

The formation of neutrophil extracellular traps (NETs), described first in 2004 as a previously unknown neutrophil strategy for combating microbes, has been attracting a growing interest in research community. NETs play a key role in inflammation and infection exploiting effector functions such as degranulation, phagocytosis as well as production of reactive oxygen species (ROS). NETs play a crucial role in defense against systemic infections. Additionally NETs involved in inflammation, and in the pathogenesis of non-infectious diseases, such as autoimmune diseases and cancer.

About the Authors

Z. D. Aslanova
Sechenov University
Russian Federation

Zamilya D. Aslanova – MD, Postgraduate Student, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children's Health.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University, Scopus Author ID: 57194547147. Researcher ID: F-8384-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



A. G. Solopova
Sechenov University
Russian Federation

Antonina G. Solopova – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children's Health, Sechenov University, Scopus Author ID: 6505479504. Researcher ID: Q-1385-2015.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



V. A. Solodkiy
Russian X-Radiology Research Center, Health Ministry of Russian Federation
Russian Federation

Vladimir A. Solodkiy – MD, Dr Sci Med, Professor, Academician of RAS, Director, Russian X-Radiology Research Center, Health Ministry of Russian Federation, Russian X-Radiology Research Center.

86 Profsoyuznaya Str., Moscow 117997



A. V. Vorobev
Sechenov University
Russian Federation

Alexander V. Vorobev – MD, PhD, Associate Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University,. Scopus Author ID: 57191966265. Researcher ID: F-8804-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



D. V. Blinov
Sechenov University; Institute for Preventive and Social Medicine; Moscow Haass Medical – Social Institute
Russian Federation

Dmitry V. Blinov – MD, PhD, MBA, Assistant, Department of Sports Medicine and Medical Rehabilitation, Sklifosovsky Institute of Clinical Medicine; Head of Medical and Scientific Affairs; Associate Professor, Department of Sports, Physical and Rehabilitation Medicine. Scopus Author ID: 6701744871. Researcher ID: E-8906-2017. RSCI: 9779-8290.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991; 4–10 Sadovaya-Triumfalnaya Str., Moscow 127006; 5 bldg. 1–1a, 2-ya Brestskaya Str., Moscow 123056



M. D. Aslanova
Russian X-Radiology Research Center, Health Ministry of Russian Federation
Russian Federation

Marina D. Aslanova – Endocrinologist, Department of Radionuclide Diagnostics.

86 Profsoyuznaya Str., Moscow 117997



I. A. Nakaidze
Sechenov University
Russian Federation

Inga A. Nakaidze – MD, Postgraduate Student, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



J.-C. Gris
Sechenov University; University of Montpellier
France

Jean-Christophe Gris – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University; Professor of Haematology, Head of the Laboratory of Haematology, Faculty of Biological and Pharmaceutical Sciences, Montpellier University and University Hospital of Nîmes; Foreign Member of RAS. Scopus Author ID: 7005114260. Researcher ID: AAA-2923-2019.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991; 163 Rue Auguste Broussonnet, Montpellier 34090



I. Elalamy
Sechenov University; Medicine Sorbonne University; Hospital Tenon
France

Ismail Elalamy – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health, Sechenov University; Professor, Medicine Sorbonne University; Director of Hematology, Department of Thrombosis Center, Hospital Tenon. Scopus Author ID: 7003652413. Researcher ID: AAC-9695-2019.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991; 12 Rue de l’École de Médecine, Paris 75006; 4 Rue de la Chine, Paris 75020



A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya – MD, Dr Sci Med, Academician of RAS, Professor, Head of the Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health; Vice-President of the Russian Society of Obstetricians and Gynecologists (RSOG); Honorary Doctor of the Russian Federation; Emeritus Professor of the University of Vienna.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



References

1. Beiter T., Fragasso A., HartlD., Nieß A.M. Neutrophil extracellular traps: a walk on the wild side of exercise immunology. Sports Med. 2015;45(5):625–40. https://doi.org/10.1007/s40279-014-0296-1.

2. Finazzi G. The Italian Registry of antiphospholipid antibodies. Haematologica. 1997;82(1):101–5.

3. Saffarzadeh M., Juenemann C., Queisser M.A. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.

4. Fine N., Tasevski N., McCulloch C.A. et al. The neutrophil: constant defender and first responder. Front Immunol. 2020;11:571085. https://doi.org/10.3389/fimmu.2020.571085.

5. Vilen S.-T., Nyberg P., Hukkanen M. et al. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res. 2008;314(4):914–26. https://doi.org/10.1016/j.yexcr.2007.10.025.

6. Antoneeva I.I. Oxygen-dependent antimicrobial system of neutrophils in the dynamics of ovarian cancer. [Kislorodzavisimaya antimikrobnaya sistema nejtrofilov v dinamike razvitiya raka yaichnikov]. Kazanskij medicinskij zhurnal. 2008;89(4):476–8. (In Russ.).

7. Schauer C., Janko C., Munoz L.E. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7. https://doi.org/10.1038/nm.3547.

8. Shi X., Li B., Yuan Y. et al. The possible association between the presence of an MPO -463 G > A (rs2333227) polymorphism and cervical cancer risk. Pathol Res Pract. 2018;8(214):1142–8. https://doi.org/10.1016/j.prp.2018.05.018.

9. Falanga A., Rickles F.R. Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Hemost. 1999;25(2):173–82. https://doi.org/10.1016/10.1055/s-2007-994919.

10. Fine N., Tasevski N., McCulloch C.A. et al. The neutrophil: constant defender and first responder. Front Immunol. 2020;11:571085. https://doi.org/10.1016/10.3389/fimmu.2020.571085.

11. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.

12. Arazna M., Pruchniak M.P., Zycinska K., Demkow U. Neutrophil extracellular trap in human diseases. Adv Exp Med Biol. 2013;756:1–8. https://doi.org/10.1007/978-94-007-4549-0_1.

13. Yalavarthi S., Gould T.J., Rao A.N. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990–3003. https://doi.org/10.1002/art.39247.

14. Demers M., Wagner D.D. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost. 2014;40(3):277–83. https://doi.org/10.1055/s-0034-1370765.

15. Malcolm K.C., Worthen G.S. Lipopolysaccharide stimulates p38-dependent induction of antiviral genes in neutrophils independently of paracrine factors. J Biol Chem. 2003;278(18):15693–701. https://doi.org/10.1074/jbc.M212033200.

16. Perobelli S.M., Galvani R.G., Gonçalves-Silva T. et al. Plasticity of neutrophils reveals modulatory capacity. Braz J Med Biol Res. 2015;48(8):665–75. https://doi.org/10.1590/1414-431X20154524.

17. Yazdani H.O., Roy E., Comerci A.J. et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79(21):5626–39. https://doi.org/10.1158/0008-5472.CAN-19-0800.

18. Yousefi S., Gold J., Andina N. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9): 949–53. https://doi.org/10.1038/nm.1855.

19. Coussens L.M., Tinkle C.L., Hanahan D., Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90. https://doi.org/10.1016/s0092-8674(00)00139-2.

20. Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218. https://doi.org/10.1146/annurev-pathol-020712-164023.

21. Al-Benna S., Shai Y., Jacobsen F., Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci. 2011;12(11):8027–51. https://doi.org/10.3390/ijms12118027.

22. Cristinziano L., Luca Modestino L., Loffredo S. et al. Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J Immunol. 2020;204(5):1362–72. https://doi.org/10.4049/jimmunol.1900543.

23. Gupta A.K., Joshi M.B., Philippova M. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosismediated cell death. FEBS Lett. 2010;584(14):3193–7. https://doi.org/10.1016/j.febslet.2010.06.006.

24. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

25. Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.

26. Demers M., Krause D.S., Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancerassociated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076– 81. https://doi.org/10.1073/pnas.1200419109.

27. Hoffmann J.H.O., Enk A.H. Neutrophil extracellular traps in dermatology: caught in the NET. J Dermatol Sci. 2016;84(1):3–10. https://doi.org/10.1016/j.jdermsci.2016.07.001.

28. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. https://doi.org/10.3389/fphys.2018.00113.

29. Kim J., Bae J.-S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:6058147. https://doi.org/10.1155/2016/6058147.

30. Rayes R.F. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5(16):e128008. https://doi.org/10.1172/jci.insight.128008.

31. Gorudko I.V., Cherkalina O.S., Sokolov A.V. et al. New approaches to the measurement of the concentration and peroxidase activity of myeloperoxidase in human blood plasma. [Novye podhody k opredeleniyu koncentracii i peroksidaznoj aktivnosti mieloperoksidazy v plazme krovi cheloveka]. Bioorganicheskaya himiya. 2009;35(5):629–39. (In Russ.).

32. Bromberg M.E., Capello M. Cancer and blood coagulation: molecular aspects. Cancer J Sci Am. 1999;5(3):132–8.

33. Loreto M.F., De Martinis M., Corsi M.P. et al. Coagulation and cancer: implications for diagnosis and management. Pathol Oncol Res. 2000;6(4):301–12. https://doi.org/10.1007/BF03187336.

34. Panagopoulos V., Leach D.A., Zinonos I. et al. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment. Int J Oncol. 2017;50(4):1191–200. https://doi.org/10.3892/ijo.2017.3883.

35. Andryukov B.G., Somova L.M., Drobot E.I., Matosova E.V. Defensive strategy of neutrophilic granulocytes against pathogenic bacteria. [Zashchitnye strategii nejtrofil'nyh granulocitov ot patogennyh bakterij]. Zdorov'e. Medicinskaya ekologiya. Nauka. 2017;(1):4–18. (In Russ.). https://doi.org/10.5281/zenodo.345606.

36. Uribe-Querol E., Rosales C. Neutrophils in cancer: two sides of the same coin. J Immunol Res. 2015;2015:983698. https://doi.org/10.1155/2015/983698.

37. Solopova A.G., Moskvichyova V.S., Blbulyan T.A. et al. Topical issues of prevention, diagnosis and treatment of vulvar and vaginal cancer. Obstetrics, Gynecology and Reproduction. 2018;12(4):62–70. (In Russ.). https://doi.org/10.17749/2313-7347.2018.12.4.062-070.

38. Shaul M.E., Fridlender Z.G. Cancer-related circulating and tumorassociated neutrophils – subtypes, sources and function. FEBS J. 2018;285(23):4316–42. https://doi.org/10.1111/febs.14524.

39. Merza M., Hartman H., Rahman M. et al. Neutrophil extracellular traps induce trypsin activation, Inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149(7):1920–31.e8. https://doi.org/10.1053/j.gastro.2015.08.026.

40. Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood-2010-06-290171.

41. Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–39. https://doi.org/10.1593/neo.07871.

42. Valadez-Cosmes P., Raftopoulou S., Mihalic Z.N. et al. Myeloperoxidase: growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther. 2022;236:108052. https://doi.org/10.1016/j.pharmthera.2021.108052.

43. Cai H., Chuang C.Y., Hawkins C.L., Davies M.J. Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep. 2020;10(1):666. https://doi.org/10.1038/s41598-019-57299-6.

44. Nesterova I.V., Kovaleva S.V., Fomicheva E.V. et al. Clinical and immunological parallels in neoplastic diseases of the digestive organs: clinical markers of immunodeficiency and dysfunction of the microbicidal and cytotoxic mechanisms of neutrophil granulocytes. [Klinikoimmunologicheskie paralleli pri neoplasticheskih zabolevaniyah organov pishchevareniya: klinicheskie markery immunodeficita i narusheniya funkcionirovaniya mikrobicidnyh i citotoksicheskih mekhanizmov nejtrofil'nyh granulocitov]. XIV Mezhdunarodnyj kongress po reabilitacii v medicine i immunoreabilitacii: tezisy dokladov. Izrail', 2009. 2009;11(1):79a. (In Russ.).

45. de Bont C.M., Eerden N., Boelens W.C., Pruijn G.J.M. Neutrophil proteases degrade autoepitopes of NET-associated proteins. Clin Exp Immunol. 2020;199(1):1–8. https://doi.org/10.1111/cei.13392.

46. López-Otín C., Matrisian L.M. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8. https://doi.org/10.1038/nrc2228.

47. Moali C., Hulmes D.J.S. Extracellular and cell surface proteases in wound healing: new players are still emerging. Eur J Dermatol. 2009;19(6):552– 64. https://doi.org/10.1684/ejd.2009.0770.

48. Sanderson R.D., Bandari S.K., Vlodavsky I. Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol. 2019;75–76:160–9. https://doi.org/10.1016/j.matbio.2017.10.007.

49. Nyberg P., Ylipalosaari M., Sorsa T., Salo T. Trypsins and their role in carcinoma growth. Exp Cell Res. 2006;312(8):1219–28. https://doi.org/10.1016/j.yexcr.2005.12.024.

50. Vilen S.-T., Nyberg P., Hukkanen M. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res. 2008;314(4):914–26. https://doi.org/10.1016/j.yexcr.2007.10.025.

51. Morimoto-Kamata R., Yui S. Insulin-like growth factor-1 signaling is responsible for cathepsin G-induced aggregation of breast cancer MCF-7 cells. Cancer Sci. 2017;108(8);1574–83. https://doi.org/10.1111/cas.13286.

52. Wilson T.J., Nannuru K.C., Futakuchi M. et al. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res. 2008;68(14):5803–11. https://doi.org/10.1158/0008-5472.CAN-07-5889.

53. McLoed A.G., Sherrill T.P., Cheng D.-S. et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell Rep. 2016;16(1):120–32. https://doi.org/10.1016/j.celrep.2016.05.085.

54. Clancy D.M., Sullivan G.P., Moran H.B.T. et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell reports. 2018;22(11):2937–50. https://doi.org/10.1016/j.celrep.2018.02.062.

55. Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502.

56. Park J.-H., Rasch M.G., Qiu J. et al. Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer. Neoplasia. 2015;17(5):421–33. https://doi.org/10.1016/j.neo.2015.04.003.

57. Peng Z., Liu C., Victor A.R. et al. Tumors exploit CXCR4hiCD62Llo aged neutrophils to facilitate metastatic spread. Oncoimmunology. 2021;10(1):1870811. https://doi.org/10.1080/2162402X.2020.1870811.

58. Yang Q., Mas A., Diamond M.P., Al-Hendy A. The mechanism and function of epigenetics in uterine leiomyoma development. Reprod Sci. 2016;23(2):163–75. https://doi.org/10.1177/1933719115584449.

59. Audia J.E., Campbell R.M. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. https://doi.org/10.1101/cshperspect.a019521.

60. Podaza E., Sabbione F., Risnik D. et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother. 2017;66(1):77– 89. https://doi.org/10.1007/s00262-016-1921-7.

61. Nie M., Yang L., Bi X. et al. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling. Clin Cancer Res. 2019;25(6):1867–79. https://doi.org/10.1158/1078-0432.CCR-18-1226.

62. Sun N., Li X., Wang Z. et al. A multiscale TiO2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl Mater Interfaces. 2016;8(20):12638–43. https://doi.org/10.1021/acsami.6b02178.

63. Mao Z., Zhang J., Shi Y. et al. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis. 2020;9(7):63. https://doi.org/10.1038/s41389-020-00249-z.

64. Teijeira A., Garasa S., Gato M. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856871.e8. https://doi.org/10.1016/j.immuni.2020.03.001.

65. Tohme S., Yazdani H.O., Al-Khafaji A.B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591.

66. Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.

67. Chaffer C.L., Weinberg R.A. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. https://doi.org/10.1126/science.1203543.

68. Chen Y., Hu H., Tan S. et al. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol. 2022;11(1):99. https://doi.org/10.1186/s40164-022-00345-3.

69. Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56. https://doi.org/10.4049/jimmunol.1300436.

70. Oklu R., Sheth R.A., Wong K.H.K. et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagns Ther. 2017;7(Suppl 3):S140–S149. https://doi.org/10.21037/cdt.2017.08.01.

71. Li Y., Yang Y., Gan T. et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol. 2019;55(1):69–80. https://doi.org/10.3892/ijo.2019.4808.

72. Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625. https://doi.org/10.1189/jlb.1204697.

73. Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71(21):4179–94. https://doi.org/10.1007/s00018-014-1683-3.

74. Berger-Achituv S., Brinkmann V., Abed U.A. et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. https://doi.org/10.3389/fimmu.2013.00048.

75. Thalin C., Lundström S., Seignez C. et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One. 2018;13(1):e0191231. https://doi.org/10.1371/journal.pone.0191231.

76. Cedervall J., Dragomir A., Saupe F. et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice. Oncoimmunology. 2017;6(8):e1320009. https://doi.org/10.1080/2162402X.2017.1320009.

77. Hisada Y., Grover S.P., Maqsood A. et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica. 2020;105(1):218–25. https://doi.org/10.3324/haematol.2019.217083.

78. Zhu T., Zou X., Yang C. et al. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition. Int J Mol Med. 2021;48(1):127. https://doi.org/10.3892/ijmm.2021.4960.

79. Volkov D.V., Tetz G.V., Rubtsov Y.P. et al. Neutrophil extracellular traps (NETs): opportunities for targeted therapy. Acta Naturae. 2021;13(3):15– 23. https://doi.org/10.32607/actanaturae.11503.

80. Zhang Y., Chandra V., Sanchez E.R. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020:217(12):e20190354. https://doi.org/10.1084/jem.20190354.

81. Schalper K.A., Carleton M., Zhou M. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 2020;26(5):688–92. https://doi.org/10.1038/s41591-020-0856-x.


Review

For citations:


Aslanova Z.D., Khizroeva J.Kh., Solopova A.G., Solodkiy V.A., Vorobev A.V., Blinov D.V., Aslanova M.D., Nakaidze I.A., Gris J., Elalamy I., Makatsariya A.D. Clinical significance of determining neutrophil extracellular traps in women with oncogynecological neoplasms. Obstetrics, Gynecology and Reproduction. 2023;17(6):751-768. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.447

Views: 1374


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)