Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Newborn weight is associated with the maternal F13A1 gene rs5985 polymorphism

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.189

Full Text:

Abstract

Aim: to evaluate a relationship between newborn weight and single-nucleotide polymorphisms rs5918 ITGB3, rs1126643 ITGA2, rs5985 F13A1 in pregnant women with preeclampsia (PE) and fetal growth retardation (FGR).

Materials and Мethods. In this prospective comparative study, molecular genetic testing for the three polymorphic loci of hereditary thrombophilia candidate genes – rs1126643 ITGA2, rs5918 ITGB3, and rs5985 F13A1 was performed in 70 pregnant women with PE and FGR. Newborn somatometry was performed using standard methods. To assess functional effects of the rs5985 polymorphism of the F13A1 gene associated with newborn weight, we applied online bioinformatic programs GTEx Portal and HaploReg (assessing a relationship between polymorphism and level of gene transcription and related epigenetic effects).

Results. The rs5985 polymorphism of the maternal F13A1 gene is associated with newborn weight according to allelic (â = 156.60; pperm = 0.05) and additive (â = 155.20; pperm = 0.05) genetic models. The polymorphic locus rs5985 of the F13A1 gene is characterized by pronounced pleiotropic regulatory effects in vivo: it determines the amino acid substitution in the A1 subunit of coagulation factor XIII (Val35Leu), associated with the activity of blood clotting factor XIII, localized in the DNase 1 hypersensitivity region, determines DNA affinity to 11 transcription factors (AP-2, CACD, EBF, ERalpha-a, ESR2, Hic1, Klf4, Klf7, SP1, ESR1 and TFAP2C), located in the region of modified histones, marking enhancers and promoters in the culture of ectoderm, endoderm and mesoderm cells, placenta, fetal brain and adrenal glands, progenitor cells and myoblasts in skeletal muscle, adipocytes, brain etc.

Conclusion. The rs5985 polymorphism of the F13A1 gene in pregnant women with PE and FGR is associated with newborn weight.

About the Authors

O. V. Golovchenko
Belgorod State National Research University
Russian Federation

Oleg V. Golovchenko – MD, PhD, Associate Professor, Department of Obstetrics and Gynecology, Medical Institute

85 Pobedy Str., Belgorod 308007



M. Yu. Abramova
Belgorod State National Research University
Russian Federation

Maria Yu. Abramova – MD, Postgraduate Student, Department of Biomedical Disciplines, Medical Institute

85 Pobedy Str., Belgorod 308007



I. V. Ponomarenko
Belgorod State National Research University
Russian Federation

Irina V. Ponomarenko – MD, Dr Sci Med, Associate Professor, Department of Biomedical Disciplines, Medical Institute

85 Pobedy Str., Belgorod 308007



M. I. Churnosov
Belgorod State National Research University
Russian Federation

Mikhail I. Churnosov – MD, Dr Sci Med, Professor, Head of the Department of Biomedical Disciplines, Medical Institute

85 Pobedy Str., Belgorod 308007



References

1. Nardozza L.M.M., Caetano A.C.R., Zamarian A.C.P. et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–77. https://doi.org/10.1007/s00404-017-4341-9.

2. Devaskar S.U., Chu A. Intrauterine growth restriction: hungry for an answer. Physiology (Bethesda). 2016;31(2):131–46. https://doi.org/10.1152/physiol.00033.2015.

3. Strizhakov A.M., Lipatov I.S., Tezikov Yu.V. Placental insufficiency: pathogenesis, prognosis, diagnosis, prevention, obstetric tactics. [Placentarnaya nedostatochnost': patogenez, prognozirovanie, diagnostika, profilaktika, akusherskaya taktika]. Samara: Ofort, 2014. 239 р. (In Russ.).

4. Heshmat S.H. Intrauterine growth restriction – a review article. Anatomy Physiol Biochem Int J. 2017;1(5):555–72. https://doi.org/10.19080/APBIJ.2017.01.555572.

5. Sharma D., Shastri S., Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. https://doi.org/10.4137/CMPed.S40070.

6. Burton G.J., Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S745–S761. https://doi.org/10.1016/j.ajog.2017.11.577.

7. Malhotra A., Allison B.J., Castillo-Melendez M. et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol (Lausanne). 2019;10:55. https://doi.org/10.3389/fendo.2019.00055.

8. Yavorskaya S.D., Dolgova N.S., Fadeeva N.I., Ananina L.P. Maternal clinical and anamnestic factors for intrauterine growth restriction. [Materinskie kliniko-anamnesticheskie faktory formirovaniya zaderzhki rosta ploda]. Voprosy ginekologii, akusherstva i perinatologii. 2019;18(5):83–7. (In Russ.). https://doi.org/10.20953/1726-1678-2019-5-83-87.

9. Gusar V.A., Timofeeva A.V., Kan N.E. et al. The expression profile of placental microRNAs as regulators of oxidative stress in fetal growth restriction. [Profil' ekspressii placentarnyh mikroRNK – regulyatorov okislitel'nogo stressa pri sindrome zaderzhki rosta ploda]. Akusherstvo i ginekologiya. 2019;(1):74–80. (In Russ.). https://doi.org/10.18565/aig.2019.1.74-80.

10. Melkozerova O.A., Bashmakova N.V., Tretyakova T.B., Shchedrina I.D. Molecular-genetic and epigenetic aspects of impaired endometrial receptivity in women with low birth weight. [Molekulyarno-geneticheskie i epigeneticheskie aspekty narusheniya receptivnosti endometriya u zhenshchin s nizkoj massoj tela pri rozhdenii]. Voprosy ginekologii, akusherstva i perinatologii. 2019;18(4):35–43. (In Russ.). https://doi.org/10.20953/1726-1678-2019-4-35-43.

11. Malyshkina A.I., Boiko E.L., Sotnikova N.Yu. et al. Interleukin-10 production and secretion in blood in relation to interleukin-10 A-1082G polymorphism in pregnant women with fetal growth restriction. [Produkciya i sekreciya IL-10 v krovi v zavisimosti ot polimorfizma gena IL-10 A-1082G u zhenshchin s zaderzhkoj rosta ploda]. Akusherstvo i ginekologiya. 2019;(6):40–6. (In Russ.). https://doi.org/10.18565/aig.2019.6.40-46.

12. Golovchenko O., Abramova M., Ponomarenko I. et al. Functionally significant polymorphisms of ESR1and PGR and risk of intrauterine growth restriction in population of Central Russia. Eur J Obstet Gynecol Reprod Biol. 2020;253:52–7. https://doi.org/10.1016/j.ejogrb.2020.07.045.

13. Reshetnikov E.A. Study of associations of candidate genes differentially expressing in the placenta with the development of placental insufficiency with fetal growth restriction. [Poisk associacij genovkandidatov, differencial'no ekspressiruyushchihsya v placente, s riskom razvitiya placentarnoj nedostatochnosti s sindromom zaderzhki rosta ploda]. Research Results in Biomedicine. 2020;6(3):338–49. 2020;6(3):338–49. (In Russ.). https://doi.org/10.18413/2658-6533-2020-6-3-0-5.

14. Efremova O.A. The study of the association of polymorphic loci of the folate cycle genes with the development of the 2–3-degree fetal growth restriction syndrome. [Izuchenie associacii polimorfnyh lokusov genov folatnogo cikla s razvitiem sindroma zaderzhki rosta ploda 2–3 stepeni]. Research Results in Biomedicine. 2020;6(1):37–50. (In Russ.). https://doi.org/10.18413/2658-6533-2020-6-1-0-4.

15. Reshetnikov E., Zarudskaya O., Polonikov A. et al. Genetic markers for inherited thrombophilia are associated with fetal growth retardation in the population of Central Russia. J Obstet Gynaecol Res. 2017;43(7):1139–44. https://doi.org/10.1111/jog.13329.

16. Dugalić S., Petronijevic M., Stefanovic A. et al. The association between IUGR and maternal inherited thrombophilias: A case-control study. Medicine (Baltimore). 2018;97(41):e12799. https://doi.org/10.1097/MD.0000000000012799.

17. Infante-Rivard C., Rivard G.E., Yotov W.V. et al. Absence of association of thrombophilia polymorfhisms with intrauterine growth restriction. N Engl J Med. 2002;347(1):19–25. https://doi.org/10.1056/NEJM200207043470105.

18. Franchi F., Cetin I., Todros T. et al. Intrauterine growth restriction and genetic predisposition to thrombophilia. Haematologica. 2004;89(4):444–9.

19. Ponomarenko I.V., Reshetnikov E.A., Polonikov A.V., Churnosov M.I. The polymorphic locus rs314276 of the LIN28B gene is associated with the age of menarche in women in the Central Black Earth Region of Russia. [Polimorfnyj lokus rs314276 gena LIN28B associirovan s vozrastom menarhe u zhenshchin Central'nogo Chernozem'ya Rossii]. Akusherstvo i ginekologiya. 2019;(2):98–104. (In Russ.). https://doi.org/10.18565/aig.2019.2.98-104.

20. Ponomarenko I.V., Reshetnikov E.A., Altuchova O.B. et al. Association of genetic polymorphisms with age at menarche in Russian women. Gene. 2019;686:228–36. https://doi.org/10.1016/j.gene.2018.11.042.

21. Golovchenko O.V., Abramova M.Yu., Ponomarenko I.V., Churnosov M.I. Polymorphic loci of the ESR1 gene are associated with the risk of developing preeclampsia with fetal growth retardation. Obstetrics, Gynecology and Reproduction. 2020;14(6):583–91. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.187.

22. Ponomarenko I.V., Polonikov A.V., Churnosov M.I. Polymorphic LHCGR gene loci associated with the development of uterine fibroids. [Polimorfnye lokusy gena LHCGR, associirovannye s razvitiem miomy matki]. Akusherstvo i ginekologiya. 2018;(10):86–91. (In Russ.). https://doi.org/10.18565/aig.2018.10.86-91.

23. Williams F.M., Carter A.M., Hysi P.G. et al. Ischemic stroke is associated with the ABO locus: the EuroCLOT study [published correction appears in Ann Neurol. 2014;75(1):166–7. https://doi.org/10.1002/ana.24105]. Ann Neurol. 2013;73(1):16–31. https://doi.org/10.1002/ana.23838.

24. Pavlovskaya Yu.M., Vorobyeva N.A. Fibrinogen and factor XIII in pregnancy. [Fibrinogen i faktor XIII pri beremennosti]. Vestnik Severnogo (Arkticheskogo) federal'nogo universiteta. Seriya: Mediko-biologicheskie nauki. 2015;(1):68–75. (In Russ.).

25. Sukhikh G.T., Filippov O.S., Belokrinitskaya T.E. et al. Prevention of venous thromboembolic complications in obstetrics and gynecology. [Profilaktika venoznyh tromboembolicheskih oslozhnenij v akusherstve i ginekologii]. Problemy reprodukcii. 2018;24(S6):169–90. (In Russ.).

26. Bitsadze V.O., Makatsariya A.D., Khizroeva D.Kh. et al. Thrombophilia as the most important link in the pathogenesis of pregnancy complications. [Trombofiliya kak vazhnejshee zveno patogeneza oslozhnenij beremennosti]. Prakticheskaya medicina. 2012;(9):24–31. (In Russ.).

27. Gribkova I.V., Koroleva N.S., Davydovskaya M.V., Murashko A.V. Increased thrombin generation as a potential marker for adverse pregnancy outcomes. [Povyshennoe obrazovanie trombina – potencial'nyj marker neblagopriyatnyh iskhodov beremennosti]. Akusherstvo i ginekologiya. 2018;(8):92–7. (In Russ.). https://doi.org/10.18565/aig.2018.8.92-97.

28. Makatsariya A.D., Bitsadze V.O., Khizroeva D.Kh. et al. Thromboprophylaxis in pregnant women with thrombophilia and thrombosis in past medical history. [Tromboprofilaktika u beremennyh s trombofiliej i trombozami v anamneze]. Byulleten' CO RAMN. 2013;33(6):99–109. (In Russ.).

29. Zarudskaya O.M., Churnosov M.I. Role of hereditary thrombophilia in the genesis of complicated pregnancy. [Rol' nasledstvennoj trombofilii v geneze oslozhnennogo techeniya beremennosti]. Akusherstvo i ginekologiya. 2013;(7):4–7. (In Russ.).

30. Li J., Wu H., Chen Y. et al. Genetic association between FXIII and β-fibrinogen genes and women with recurrent spontaneous abortion: a meta-analysis. J Assist Reprod Genet. 2015;32(5):817–25. https://doi.org/10.1007/s10815-015-0471-9.

31. Suvatha A., Sibin M.K., Bhat D.I. et al. Factor XIII polymorphism and risk of aneurysmal subarachnoid haemorrhage in a south Indian population. BMC Med Genet. 2018;19(1):159. https://doi.org/10.1186/s12881-018-0674-x.

32. Soria J.M., Morange P.E., Vila J. et al. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc. 2014;3(5):e001060. https://doi.org/10.1161/JAHA.114.001060.

33. Churnosov M.I., Altuchova O.B., Demakova N.A. et al. Associations of cytokines genetic variants with myomatous knots sizes. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014;5(6):1344–7.

34. Krivoshei I.V., Altuchova O.B., Golovchenko O.V. et al. Genetic factors of hysteromyoma. Res J Med Sci. 2015;9(4):182–5.

35. Pachomov S.P., Altuchova O.B., Demakova N.A. et al. Study of cytokines polymorphous loci connections with rise of endometrium proliferative diseases. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014;5(6):1473–6.

36. Krivoshei I.V., Altuchova O.B., Polonikov A.V., Churnosov M.I. Bioinformatic analysis of the liability to the hyperplastic processes of the uterus. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(5):1563–6.


For citation:


Golovchenko O.V., Abramova M.Yu., Ponomarenko I.V., Churnosov M.I. Newborn weight is associated with the maternal F13A1 gene rs5985 polymorphism. Obstetrics, Gynecology and Reproduction. 2021;15(3):236-244. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.189

Views: 37


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)