COVID-19 in pregnant women after assisted reproductive technologies receiving low molecular weight heparins
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.219
Abstract
We have accumulated my own experience of management pregnant women with COVID-19 after assisted reproductive technologies (ART) receiving low molecular weight heparins (LMWH). All women suffered COVID-19 in mild form without respiratory failure and gave birth to healthy children. Our observations correspond to the data of world literature. Therefore, we want to draw the attention of the editors and the readers to the positive role of LMWH in the control of COVID-19.
About the Authors
N. S. StulevaRussian Federation
Nadezhda S. Stuleva – MD, PhD, Associate Professor, Department of Obstetrics and Gynecology, Filatov Clinical Institute of Children’s Health, Sechenov University; Obstetrician-Gynecologist, Center of Reproductive Medicine and Genetics «Nova Clinic»
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
20 Lobachevsky Str., Moscow 119415
A. L. Mishchenko
Russian Federation
Alexander L. Mishchenko – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology, Filatov Clinical Institute of Children’s Health
2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991
References
1. Khizroeva J.Kh., Makatsariya A.D., Bitsadze V.O. et al. Laboratory monitoring of COVID-19 patients and importance of coagulopathy markers. [Laboratornyj monitoring COVID-19 i znachenie opredeleniya markerov koagulopatii]. Obstetrics, Gynecology and Reproduction. 2020;14(2):132–47. (In Russ.). https://doi.org/10.17749/2313-7347.141.
2. Tamm M.V. COVID-19 in Moscow: prognoses and scenarios. [Koronavirusnaya infekciya v Moskve: prognozy i scenarii]. FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2020;13(1):43–51. (In Russ.). https://doi.org/10.17749/2070-4909.2020.13.1.43-51.
3. Goncharova E.V., Donnikov A.E., Kadochnikova V.V. et al. Real-time RT-PCR diagnostics of virus causing COVID-19. [Diagnostika virusa, vyzyvayushchego COVID-19, metodom PCR v real'nom vremeni]. FARMAKOEKONOMIKA. Modern Pharmacoeconomic and Pharmacoepidemiology. 2020;13(1):52–63. (In Russ.). https://doi.org/10.17749/2070-4909.2020.13.1.52-63.
4. Makatsariya A.D., Bitsadze V.O., Khizroeva J.Kh. et al. Novel coronavirus infection (COVID-19) and risk groups in obstetrics and gynecology. [Novaya koronavirusnaya infekciya (COVID-19) i gruppy riska v akusherstve i ginekologii]. Obstetrics, Gynecology and Reproduction. 2020;14(2):159–62. (In Russ.). https://doi.org/10.17749/2313-7347.133.
5. Makatsariya A.D., Grigorieva K.N., Mingalimov M.A. et al. Coronavirus disease (COVID-19) and disseminated intravascular coagulation. [Koronavirusnaya infekciya (COVID-19) i sindrom disseminirovannogo vnutrisosudistogo svertyvaniya]. Obstetrics, Gynecology and Reproduction. 2020;14(2):123–31. (In Russ.). https://doi.org/10.17749/2313-7347.132.
6. Iupatov E.Yu., Maltseva L.I., Zamaleeva R.S. et al. A novel coronavirus infection COVID-19 in practice of obstetrician-gynecologist: a review of current data and guidelines. [Novaya koronavirusnaya infekciya COVID-19 v praktike akushera-ginekologa: obzor sovremennyh dannyh i rekomendacij]. Obstetrics, Gynecology and Reproduction. 2020;14(2):148–58. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.142.
7. Grandone E., Di Micco P.P., Villani M. et al. Venous thromboembolism in women undergoing assisted reproductive technologies: data from the RIETE registry. Thromb Haemost. 2018;118(11):1962–8. https://doi.org/10.1055/s-0038-1673402.
8. Croles F.N., Nasserinejad K., Duvekot J.J. et al. Pregnancy, thrombophilia, and the risk of a first venous thrombosis: systematic review and bayesian meta-analysis. BMJ. 2017;359:j4452. https://doi.org/10.1136/bmj.j4452.
9. Gerotziafas G.T., Catalano M., Colgan M.-P. et al. Guidance for the management of patients with vascular disease or cardiovascular risk factors and COVID-19: position paper from VAS-European Independent Foundation in Angiology/Vascular Medicine. Thromb Haemost. 2020;120(12):1597–628. https://doi.org/10.1055/s-0040-1715798.
10. Billett H.H., Reyes-Gil M., Szymanski J. et al. Anticoagulation in COVID-19: effect of enoxaparin, heparin, and apixaban on mortality. Thromb Haemost. 2020;120(12):1691–9. https://doi.org/10.1055/s-0040-1720978.
11. Mycroft-West C.J., Su D., Pagani I. et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb Haemost. 2020;120(12):1700–15. https://doi.org/10.1055/s-0040-1721319.
12. Bikdeli B., Madhavan M.V., Gupta A. et al. Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research. Thromb Haemost. 2020;120(7):1004–24. https://doi.org/10.1055/s-0040-1713152.
13. Drouet L., Harenberg J., Torri G. The multiple faces of heparin: opportunities in COVID-19 infection and beyond. Thromb Haemost. 2020;120(10):1347–50. https://doi.org/10.1055/s-0040-1716543.
Review
For citations:
Stuleva N.S., Mishchenko A.L. COVID-19 in pregnant women after assisted reproductive technologies receiving low molecular weight heparins. Obstetrics, Gynecology and Reproduction. 2021;15(3):225-227. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.219

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.