Preview

Obstetrics, Gynecology and Reproduction

Advanced search

A new epoch in assessing fetal heart condition

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.225

Full Text:

Abstract

Assessment of fetal cardiac function is one of the essential components of fetal echocardiography. Functional impairment is associated with a high risk of adverse perinatal outcomes and even antenatal death. Prenatal detection of hemodynamics changes requires immediate prenatal actions to identify the causes and eliminate the consequences that may require conservative treatment, intrauterine surgical treatment, and early delivery in perinatal centers.

About the Authors

V. I. Tsibizova
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Valentina I. Tsibizova – MD, Obstetrician-Gynecologist, Research Laboratory of Operative Gynecology, Institute of Perinatology and Pediatrics; Physician, Department of Functional and Ultrasound Diagnostics

2 Akkuratova Str., Saint Petersburg 197341



I. I. Averkin
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Igor I. Averkin – MD, Pediatric Cardiologist, Department of Pediatric Cardiology

2 Akkuratova Str., Saint Petersburg 197341



V. O. Bitsadze
Sechenov University
Russian Federation

Viktoria O. Bitsadze – MD, Dr Sci Med, Professor of RAS, Professor, Department of Obstetrics and Gynecology, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 6506003478. Researcher ID: F-8409-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991

 



A. V. Kozlenok
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Andrey V. Kozlenok – MD, PhD, Head of the Research Institute of Physiology of Blood Circulation

2 Akkuratova Str., Saint Petersburg 197341



E. V. Grekhov
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Evgeny V. Grekhov – MD, PhD, Cardiovascular Surgeon, Head of the Research Group for Pediatric Cardiac Surgery; Senior Researcher, Research Institute of Cardiovascular Diseases in Children, Scientific Director of the Department of Cardiovascular Surgery for Children

2 Akkuratova Str., Saint Petersburg 197341



T. M. Pervunina
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Tatiana М. Pervunina – MD, Dr Sci Med, Director of the Institute of Perinatology and Pediatrics

2 Akkuratova Str., Saint Petersburg 197341



K. V. Petrov
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Konstantin V. Petrov – MD, Head of the Department of Ultrasound and Functional Diagnostics

2 Akkuratova Str., Saint Petersburg 197341



D. O. Saprykina
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Daria O. Saprykina – MD, Obstetrician-Gynecologist

2 Akkuratova Str., Saint Petersburg 197341



D. V. Blinov
Institute for Preventive and Social Medicine; Lapino Clinical Hospital, GC «Mother and Child»
Russian Federation

Dmitry V. Blinov – MD, PhD, MBA, Head of Medical and Scientific Affairs, Institute for Preventive and Social Medicine; Neurologist, Lapino Clinical Hospital, GC «Mother and Child»,

Scopus Author ID: 6701744871. Researcher ID: E-8906-2017. RSCI: 9779-8290.

4–10 Sadovaya-Triumfalnaya Str., Moscow 127006;
1st Uspenskoe Highway, Lapino, Odintsovo District, Moscow region 143081



References

1. Kenny J.F., Plappert T., Doubilet P. et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation. 1986;74(6):1208–16. https://doi.org/10.1161/01.cir.74.6.1208.

2. Johnson P., Maxwell D., Tynan M., Allan L. Intracardiac pressures in the human fetus. Heart. 2000;84(1):59–63. https://doi.org/10.1136/heart.84.1.59.

3. Friedman W.F. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972;15(1):87–111. https://doi.org/10.1016/0033-0620(72)90006-0.

4. Sikkel E., Klumper F., Oepkes D. et al. Fetal cardiac contractility before and after intrauterine transfusion. Ultrasound Obstet Gynecol. 2005;26(6):611–7. https://doi.org/10.1002/uog.1996.

5. Harada K., Ogawa M., Tanaka T. Right ventricular pre-ejection myocardial velocity and myocardial acceleration in normal fetuses assessed by Doppler tissue imaging. J Am Soc Echocardiogr. 2005;18(4):370–4. https://doi.org/10.1016/j.echo.2004.10.017.

6. Matsui H., Germanakis I., Kulinskaya .E, Gardiner H. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound Obstet Gynecol. 2011;37(2):150–7. https://doi.org/10.1002/uog.8815.

7. Nii M., Roman K.S., Kingdom J. et al. Assessment of the evolution of normal fetal diastolic function during mid and late gestation by spectral Doppler tissue echocardiography. J Am Soc Echocardiogr. 2006;19(12):1431–7. https://doi.org/10.1016/j.echo.2006.05.027.

8. Alter D.N., Reed K.L., Marx G.R. et al. Prenatal diagnosis of congestive heart failure in a fetus with a sacrococcygeal teratoma. Obstet Gynecol. 1988;71(6 Pt 2):978–81.

9. Statile C., Cnota J., Gomien S. et al. Estimated cardiac output and cardiovascular profile score in fetuses with high cardiac output lesions. Ultrasound Obstet Gynecol. 2013;41(1):54–8. https://doi.org/10.1002/ uog.12309.

10. Sugibayashi R., Ozawa K., Sumie M. et al. Forty cases of twin reversed arterial perfusion sequence treated with radio frequency ablation using the multistep coagulation method: a single-center experience. Prenat Diagn. 2016;36(5):437–43. https://doi.org/10.1002/pd.4800.

11. Kilby M.D., Szwarc R., Benson L.N., Morrow R.J. Left ventricular hemodynamics in anemic fetal lambs. J Matern Fetal Med. 1998;26(1):5–12. https://doi.org/10.1002/(SICI)15206661(199801/02)7:1<51::AID-MFM12>3.0.CO;2-O.

12. Oberhoffer R., Grab D., Keckstein J. et al. Cardiac changes in fetuses secondary to immune hemolytic anemia and their relation to hemoglobin and catecholamine concentrations in fetal blood. Ultrasound Obstet Gynecol. 1999;13(6):396–400. https://doi.org/10.1046/j.1469-0705.1999.13060396.x.

13. Rizzo G., Capponi A., Talone P. et al. Doppler indices from inferior vena cava and ductus venosus in predicting pH and oxygen tension in umbilical blood at cordocentesis in growth-retarded fetuses. Ultrasound Obstet Gynecol. 1996;7(6):401–10. https://doi.org/10.1046/ j.1469-0705.1996.07060401.x.

14. Xiong L., Bernard L.S., Hashima J.N. et al. Regional myocardial function and response to acute afterload increase in chronically anemic fetal sheep: evaluation by two-dimensional strain echocardiography. Ultrasound Med Biol. 2010;36(12):2042–7. https://doi.org/10.1016/j.ultrasmedbio.2010.08.014.

15. Mari G., Norton M.E., Stone J. et al. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline# 8: the fetus at risk for anemia–diagnosis and management. Am J Obstet Gynecol. 2015;212(6):697–710. https://doi.org/10.1016/j.ajog.2015.01.059.

16. Schenone M.H., Mari G. The MCA Doppler and its role in the evaluation of fetal anemia and fetal growth restriction. Clin Perinatol. 2011;38(1):83–102. https://doi.org/10.1016/j.clp.2010.12.003.

17. Gagnon R., Van den Hof M. The use of fetal Doppler in obstetrics. J Obstet Gynaecol Can. 2003;25(7):601–14; quiz 615–6.

18. Mahieu-Caputo D., Meulemans A., Martinovic J. et al. Paradoxic activation of the renin-angiotensin system in twin-twin transfusion syndrome: an explanation for cardiovascular disturbances in the recipient. Pediatr Res. 2005;58(4):685–8. https://doi.org/10.1203/01.PDR.0000180558.03164.E8.

19. Lougheed J., Sinclair B.G., Fung K.F.K. et al. Acquired right ventricular outflow tract obstruction in the recipient twin in twin-twin transfusion syndrome. J Am Coll Cardiol. 2001;38(5):1533–8. https://doi.org/10.1016/s0735-1097(01)01549-2.

20. Rychik J., Zeng S., Bebbington M. et al. Speckle tracking-derived myocardial tissue deformation imaging in twin-twin transfusion syndrome: differences in strain and strain rate between donor and recipient twins. Fetal Diagn Ther. 2012;32(1–2):131–7. https://doi.org/10.1159/000335403.

21. Kondo Y., Hidaka N., Yumoto Y. et al. Cardiac hypertrophy of one fetus and selective growth restriction of the other fetus in a monochorionic twin pregnancy. J Obstet Gynaecol Res. 2010;36(2):401–4. https://doi.org/10.1111/j.1447-0756.2009.01138.x.

22. Bahtiyar M.O., Copel J.A. Cardiac changes in the intrauterine growthrestricted fetus. Semin Perinatol. 2008;32(3):190–3. https://doi.org/10.1053/j.semperi.2008.02.010.

23. MacColl C.E., Manlhiot C., Page C. et al. Factors associated with in utero demise of fetuses that have underlying cardiac pathologies. Pediatr Cardiol. 2014;35(8):1403–14. https://doi.org/10.1007/s00246-014-0943-1.

24. Freud L.R., McElhinney D.B., Marshall A.C. et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 2014;130(8):638–45. https://doi.org/10.1161/CIRCULATIONAHA.114.009032.

25. Selamet Tierney E., Wald R., McElhinney D. et al. Changes in left heart hemodynamics after technically successful in-utero aortic valvuloplasty. Ultrasound Obstet Gynecol. 2007;30(5):715–20. https://doi.org/10.1002/uog.5132.

26. Kovacevic A., Öhman A., Tulzer G. et al. Fetal hemodynamic response to aortic valvuloplasty and postnatal outcome: a European multicenter study. Ultrasound Obstet Gynecol. 2018;52(2):221–9. https://doi.org/10.1002/uog.18913.

27. McElhinney D.B., Vogel M., Benson C.B. et al. Assessment of left ventricular endocardial fibroelastosis in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome. Am J Cardiol. 2010;106(12):1792–7. https://doi.org/10.1016/j.amjcard.2010.08.022.

28. Tulzer G., Gudmundsson S., Sharkey A.M. et al. Doppler echocardiography of fetal ductus arteriosus constriction versus increased right ventricular output. J Am Coll Cardiol. 1991;18(2):532– 6. https://doi.org/10.1016/0735-1097(91)90611-c.

29. Weber R., Kantor P., Chitayat D. et al. Spectrum and outcome of primary cardiomyopathies diagnosed during fetal life. JACC: Heart Failure. 2014;2(4):403–11. https://doi.org/10.1016/j.jchf.2014.02.010.

30. Pedra S.R., Smallhorn J.F., Ryan G. et al. Fetal cardiomyopathies: pathogenic mechanisms, hemodynamic findings, and clinical outcome. Circulation. 2002;106(5):585–91. https://doi.org/10.1161/01.cir.0000023900.58293.fe.

31. Brooks P.A., Khoo N.S., Hornberger L.K. Systolic and diastolic function of the fetal single left ventricle. J Am Soc Echocardiogr. 2014;27(9):972–7. https://doi.org/10.1016/j.echo.2014.06.012.

32. Inamura N., Taketazu M., Smallhorn J.F., Hornberger .LK. Left ventricular myocardial performance in the fetus with severe tricuspid valve disease and tricuspid insufficiency. Am J Perinatol. 2005;22(2):91–7. https://doi.org/10.1055/s-2005-837739


For citation:


Tsibizova V.I., Averkin I.I., Bitsadze V.O., Kozlenok A.V., Grekhov E.V., Pervunina T.M., Petrov K.V., Saprykina D.O., Blinov D.V. A new epoch in assessing fetal heart condition. Obstetrics, Gynecology and Reproduction. 2021;15(2):208-217. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.225

Views: 126


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)