Preview

Акушерство, Гинекология и Репродукция

Расширенный поиск

Генетическая предрасположенность при раке шейки матки

https://doi.org/10.17749/2313-7347.139

Аннотация

Цель исследования: рассмотреть роль генетических факторов и вируса папилломы человека (ВПЧ) в развитии неоплазии шейки матки на основании современных литературных данных по вирусному канцерогенезу.

Материалы и методы. Выполнен систематический обзор литературы по генетической предрасположенности к раку шейки матки (РШМ) на основе электронных данных: поиск осуществляли в Международных научных базах данных (МНБД) PubMed/MEDLINE, также проводили ручной поиск в списках первоисточников рассматриваемых исследований. Отбирали только полнотекстовые публикации.

Результаты и обсуждение. РШМ представляет собой мультифакториальное заболевание, которое подразумевает, что оно имеет генетическую предрасположенность хозяина и вызвано персистирующей ВПЧ-инфекцией высокого онкогенного риска. Иммунная система играет главную роль в инфекции ВПЧ. Изменения в механизмах клеточного иммунного ответа ответственны за неспособность устранить ВПЧ. С другой стороны, иммунная толерантность способствует вирусной персистенции и прогрессированию рака. Основными генами, участвующими в развитии РШМ, являются онкогены, генысупрессоры опухолей (Rb и TP53), цитокины (IL, IFNG), хемокины (CXCL), гены, участвующие в процессинге антигенов, а также вклад каждого полиморфизма или даже гаплотипы играют роль в канцерогенезме шейки матки.

Заключение. Результаты исследований позволили показать роль генетических полиморфизмов цитокинов, хемокинов, рецепторов, генов, участвующих в регуляции процессинга антигенов, и генов-супресоров опухолей в хронизации ВПЧ-инфекции.

Об авторах

Т. В. Ротару
Государственный университет медицины и фармации имени Николае Тестемицану
Молдова

Ротару Тудор Васильевич – доктор медицинских наук, доцент кафедры онкологии

MD 2001 Кишинев, бул. Штефан чел Маре, д. 165



Л. И. Ротару
Государственный университет медицины и фармации имени Николае Тестемицану
Молдова

Ротару Людмила Ивановна – доктор биологических наук, доцент кафедры молекулярной биологии и генетики человека

MD 2001 Кишинев, бул. Штефан чел Маре, д. 165



Н. П. Лапочкина
ФГБОУ ВО «Ивановская государственная медицинская академия» Министерства здравоохранения Российской Федерации»
Россия

Лапочкина Нина Павловна – доктор медицинских наук, доцент кафедры онкологии, акушерства и гинекологии

153012 Иваново, Шереметьевский пр., д. 8



Список литературы

1. International Agency for Research on Cancer. WHO, 2019. 2 p. Available at: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. [Accessed: 20.04.2020].

2. Yu L., Fei L., Liu X. et al. Application of p16/Ki-67 dual-staining cytology in cervical cancers. J Cancer. 2019;10(12):2654–60. DOI:10.7150/jca.32743.

3. Leo P.J., Madeleine M.M., Wang S. et al. Defining the genetic susceptibility to cervical neoplasia–A genome-wide association study. PLOS Genetics. 2017;13(8):e1006866. DOI: 10.1371/journal.pgen.1006866.

4. Song D., Li H., Li H., Dai J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett. 2015;10(2):600–6. DOI: 10.3892/ol.2015.3295.

5. Zhou C., Tuong Z.K., Frazer I.H. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol. 2019;9:682. DOI: 10.3389/fonc.2019.00682.

6. Abreu Velez A.M., Howard M.S. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med Sci. 2015;7(5):176–88. DOI: 10.4103/1947-2714.157476.

7. Di Domenico M., Giovane G., Kouidhi S. et al. HPV epigenetic mechanisms related to oropharyngeal and cervix cancers. Cancer Biol Ther. 2018;19(10):850–7. DOI: 10.1080/15384047.2017.1310349.

8. Kuguyo O., Tsikai N., Thomford N.E. et al. Genetic susceptibility for cervical cancer in African populations: what are the host genetic drivers? OMICS. 2018;22(7):468–83. DOI: 10.1089/omi.2018.0075.

9. Chrysostomou A.C., Stylianou D.C., Constantinidou A., Kostrikis L.G. Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing. Viruses. 2018;10(12). pii: E729. DOI: 10.3390/v10120729.

10. Koliopoulos G., Nyaga V.N., Santesso N. et al. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst Rev. 2017;8:CD008587. DOI: 10.1002/14651858.CD008587.pub2.

11. Bonello K., Blundell R. The role of the human papillomavirus (HPV) in cervical cancer: A review about HPV-induced carcinogenesis and its epidemiology, diagnosis, management and prevention. Int J Med Students. 2016;4(1):26–32. DOI: 10.5195/ijms.2016.146.

12. Guo Y., Zhang X., Xu Q. et al. Human papillomavirus 16 oncoprotein E7 retards mitotic progression by blocking Mps1-MAP4 signaling cascade. Oncogene. 2019;38(31):5959–70. DOI: 10.1038/s41388-019-0851-1.

13. Pontillo A., Bricher P., Leal V.N. et al. Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development. J Med Virol. 2016;88(9):1646–51. DOI: 10.1002/jmv.24514.

14. Alves J.J.P., De Medeiros Fernandes T.A.A., De Araújo J.M.J. et al. Th17 response in patients with cervical cancer. Oncol Lett. 2018;16(5):6215–27. DOI:10.3892/ol.2018.9481.

15. Mehta A.M., Mooij M., Branković I. et al. Cervical carcinogenesis and immune response gene polymorphisms: a review. J Immun Res. 2017;2017:8913860. DOI: 10.1155/2017/8913860.

16. Guo C., Wen L., Song J.K. et al. Significant association between interleukin-10 gene polymorphisms and cervical cancer risk: a metaanalysis. Oncotarget. 2018;9(15):12365–75. DOI: 10.18632/oncotarget.24193.

17. Yao X., Huang J., Zhong H. et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 2014;141(2):125–39. DOI: 10.1016/j.pharmthera.2013.09.004.

18. Ho L.J., Luo S.F., Lai J.H. Biological effects of interleukin-6: clinical applications in autoimmune diseases and cancers. Biochem Pharmacol. 2015;97(1):16–26. DOI: 10.1016/j.bcp.2015.06.009.

19. Song Z., Lin Y., Ye X. et al. Expression of IL-1α and IL-6 is associated with progression and prognosis of human cervical cancer. Med Sci Monit. 2016;22:4475–81. DOI: 10.12659/MSM.898569.

20. Gupta M.K., Singh R., Banerjee M. Cytokine gene polymorphisms and their association with cervical cancer: A North Indian study. Egypt J Med Hum Genet. 2016;17(2):155–63. DOI: 10.1016/j.ejmhg.2015.10.005.

21. Xu J., Ye Y., Zhang H. et al. Diagnostic and prognostic value of serum Interleukin-6 in colorectal cancer. Medicine (Baltimore). 2016;95(2):e2502. DOI: 10.1097/MD.0000000000002502.

22. Chen M.F., Lin P.Y., Wu C.F. et al. IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. PLoS One. 2013;8(4):e61901. DOI: 10.1371/journal.pone.0061901.

23. Kelly P.N., Romero D.L., Yang Y. et al. Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy. J Exp Med. 2015;212(13):2189–201. DOI: 10.1084/jem.20151074.

24. Inoue A., Obayashi K., Sonoda Y. et al. Regulation of matrix metalloproteinase-1 and alpha-smooth muscle actin expression by interleukin-1 alpha and tumour necrosis factor alpha in hepatic stellate cells. Cytotechnology. 2017;69(3):461–8. DOI: 10.1007/s10616-016-9948-3.

25. Kushwah A.S., Gupta M.K., Singh R., Banerjee M. et al. Cytokine gene variants and treatment outcome of cisplatin-based concomitant chemoradiotherapy in cervical cancer. Br J Biomed Sci. 2020;77(2):81–6. DOI: 10.1080/09674845.2020.1714164.

26. Wang L., Zhao W., Hong J. et al. Association between IL1B gene and cervical cancer susceptibility in Chinese Uygur population: a case-control study. Mol Genet Genomic Med. 2019;7(8):e779. DOI: 10.1002/mgg3.779.

27. Ainouze M., Rochefort P., Parroche P. et al. Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathog. 2018;14(8):e1007158. DOI: 10.1371/journal.ppat.1007158.

28. Heeren A.M., Kenter G.G., Jordanova E.S., de Gruijl T.D. CD14+ macrophage-like cells as the linchpin of cervical cancer perpetrated immune suppression and early metastatic spread: A new therapeutic lead? Oncoimmunology. 2015;4(6):e1009296. DOI: 10.1080/2162402X.2015.1009296.

29. Liu N., Song Y., Shi W. IFN-γ +874 T/A polymorphisms contributes to cervical cancer susceptibility: a meta-analysis. Int J Clin Exp Med. 2015;8(3):4008–15.

30. Heeren A.M., Koster B.D., Samuels S. et al. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res. 2014;3(1):48–58. DOI: 10.1158/2326-6066.CIR-14-0149.

31. Zhang J., Jin S., Li X. et al. Human papillomavirus type 16 disables the increased natural killer cells in early lesions of the cervix. J Immunol Res. 2019;2019:9182979. DOI: 10.1155/2019/9182979.

32. Sun Y., Lu Y., Pen Q. et al. Interferon gamma +874 T/A polymorphism increases the risk of cervical cancer: evidence from a meta-analysis. Tumour Biol. 2015;36(6):4555–64. DOI: 10.1007/s13277-015-3100-4.

33. Shiiba M., Saito K., Yamagami H. et al. Interleukin-1 receptor antagonist (IL1RN) is associated with suppression of early carcinogenic events in human oral malignancies. Int J Oncol. 2015;46(5):1978–84. DOI: 10.3892/ijo.2015.2917.

34. Rai H., Sinha N., Kumar S. et al. Interleukin-1 gene cluster polymorphisms and their association with coronary artery disease: separate evidences from the largest case-control study amongst North Indians and an updated meta-analysis. PLoS One. 2016;11(4):e0153480. DOI: 10.1371/journal.pone.0153480.

35. Sousa H., Santos A.M., Catarino R. et al. IL-1RN VNTR polymorphism and genetic susceptibility to cervical cancer in Portugal. Mol Biol Rep. 2012;39(12):10837–42. DOI: 10.1007/s11033-012-1979-z.

36. Li L., Ma Y., Liu S. et al. Interleukin 10 promotes immune response by increasing the survival of activated CD8+ T cells in human papillomavirus 16-infected cervical cancer. Tumour Biol. 2016;37:16093–101. DOI: 10.1007/s13277-016-5466-3.

37. Osiagwu D.D., Azenabor A.E., Osijirin A.A. et al. Evaluation of interleukin 8 and interleukin 10 cytokines in liquid based cervical cytology samples. Pan Afr Med J. 2019;32:148. DOI: 10.11604/pamj.2019.32.148.16314.

38. Guo C., Wen L., Song J.K. et al. Significant association between interleukin-10 gene polymorphisms and cervical cancer risk: a meta-analysis. Oncotarget. 2018;9(15):12365–75. DOI: 10.18632/oncotarget.24193.

39. Atoum M.F. ACC interleukin-10 gene promoter haplotype as a breast cancer risk factor predictor among Jordanian females. Onco Targets Ther. 2016;9:3353–7. DOI: 10.2147/OTT.S101628.

40. Singhal P., Kumar A., Bharadwaj S. et al. Association of IL-10 GTC haplotype with serum level and HPV infection in the development of cervical carcinoma. Tumour Biol. 2015;36(4):2287–98. DOI: 10.1007/s13277-014-2836-6.

41. Wang S., Sun H., Jia Y. et al. Association of 42 SNPs with genetic risk for cervical cancer: an extensive meta-analysis. BMC Med Genet. 2015;16:25. DOI: 10.1186/s12881-015-0168-z.

42. Du G.H., Wang J.K., Richards J.R., Wang J.J. Genetic polymorphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. Int Immunopharmacol. 2019;66:154–61. DOI: 10.1016/j.intimp.2018.11.015.

43. Berti F.C.B., Pereira A.P.L., Cebinelli G.C.M. et al. The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma. Cytokine Growth Factor Rev. 2017;34:1–13. DOI: 10.1016/j.cytogfr.2017.03.002.

44. Wang Y., Liu X.H., Li Y.H., Li O. The paradox of IL-10-mediated modulation in cervical cancer. Biomed Rep. 2013;1(3):347–51. DOI: 10.3892/br.2013.69.

45. Torres-Poveda K., Bahena-Román M., Madrid-González C. et al. Role of IL-10 and TGF-β1 in local immuno suppression in HPV-associated cervical neoplasia. World J Clin Oncol. 2014;5(4):753–63. DOI: 10.5306/wjco.v5.i4.753.

46. Schrevel M., Karim R., ter Haar N.T. et al. CXCR7 expression is associated with disease-free and disease-specific survival in cervical cancer patients. Br J Cancer. 2012;106(9):1520–5. DOI: 10.1038/bjc.2012.110.

47. Wang C., Cheng H., Li Y. Role of SDF-1 and CXCR4 in the proliferation, migration and invasion of cervical cancer. Pak J Pharm Sci. 2016;29(6 Spec):2151–4.

48. Song Z., Zhang X., Ye X. et al. High expression of stromal cell-derived factor 1 (SDF-1) and NF-κB predicts poor prognosis in cervical cancer. Med Sci Monit. 2017;23:151–7. DOI: 10.12659/MSM.899319.

49. Yin G., Zhu T., Li J. et al. CXCL12 rs266085 and TNF-α rs1799724 polymorphisms and susceptibility to cervical cancer in a Chinese population. Int J Clin Exp Pathol. 2015;8(5):5768– 74.

50. Sangwaiya A., Gill M., Bairwa S. et al. Utility of P16/INK4a and Ki-67 in preneoplastic and neoplastic lesions of cervix. Iran J Pathol. 2018;13(3):308–16.

51. Zanotta N., Tornesello M.L., Annunziata C. et al. Candidate soluble immune mediators in young women with high-risk human papillomavirus infection: high expression of chemokines promoting angiogenesis and cell proliferation. PLoS One. 2016;11(3):e0151851. DOI: 10.1371/journal.pone.0151851.

52. Zhang X., Shen D. p16INK4a and Ki-67 measurement predict progression of cervical low-grade squamous intraepithelial lesion. Int J Clin Exp Pathol. 2018;11(8):4109–16.

53. Pavlidou E., Daponte A., Egea R. et al. Genetic polymorphisms of FAS and EVER genes in a Greek population and their susceptibility to cervical cancer. BMC Cancer. 2016;16(1):923. DOI: 10.1186/s12885-016-2960-3.

54. Tan S.C., Ismail M.P., Duski D.R. et al. FAS c.-671A>G polymorphism and cervical cancer risk: a case-control study and meta-analysis. Cancer Genet. 2017;211:8–25. DOI: 10.1016/j.cancergen.2017.01.004.

55. Kedhari Sundaram M., Raina R., Afroze N. et al. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci Rep. 2019;39(8). pii: BSR20190720. DOI: 10.1042/BSR20190720.

56. Wu S., Wang S., Fu Y. et al. A novel mechanism of rs763110 polymorphism contributing to cervical cancer risk by affecting the binding affinity of C/EBPβ and OCT1 complex to chromatin. Int J Cancer. 2017;140(4):756–63. DOI:10.1002/ijc.30490.

57. Pandey N.O., Chauhan A.V., Raithatha N.S. et al. Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Scientific Reports. 2019;9(1):9729. DOI: 10.1038/s41598-019-46077-z.

58. Duffy L., O’Reilly S. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. Immunotargets Ther. 2016;5:69–80. DOI: 10.2147/ITT.S89795.

59. Nischalke H.D., Coenen M., Berger C. et al. The toll-like receptor 2 (TLR2) -196 to -174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer. 2012;130(6):1470–5. DOI: 10.1002/ijc.26143.

60. Yang X., Cheng Y., Li C. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduct Target Ther. 2017;2:17055. DOI: 10.1038/sigtrans.2017.55.

61. Safaeian M., Johnson L.G., Yu K. et al. Human leukocyte antigen class I and II alleles and cervical adenocarcinoma. Front Oncol. 2014;4:119. DOI: 10.3389/fonc.2014.00119.

62. Hasim A., Abudula M., Aimiduo R. et al. Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One. 2012;7(9):e44952. DOI: 10.1371/journal.pone.0044952.

63. Mehta A.M, Spaans V.M, Mahendra N.B et al. Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations. Immunogenetics. 2015;67(5– 6):267–75. DOI: 10.1007/s00251-015-0834-5.

64. Alsbeih G., Elsebaie M., Almanea H. et al. HPV infection in cervical and other cancers. J Cancer Biol Res. 2016;4(2):1079.

65. Sullivan K.D., Galbraith M.D., Andrysik Z., Espinosa J.M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–43. DOI: 10.1038/cdd.2017.174.

66. Roshani D., Abdolahi A., Rahmati S. Association of p53 codon 72 Arg>Pro polymorphism and risk of cancer in Iranian population: a systematic review and meta-analysis. Med J Islam Repub Iran. 2017;31(1):896–902. DOI: 10.14196/mjiri.31.136

67. Coelho A., Nogueira A., Soares S. et al. TP53 Arg72 Pro polymorphism is associated with increased overall survival but not response to therapy in Portuguese/Caucasian patients with advanced cervical cancer. Oncol Lett. 2018;15(5):8165–71. DOI: 10.3892/ol.2018.8354.

68. Eltahir H.A., Elhassan A.M., Ibrahim M.E. Contribution of retinoblastoma LOH and the p53 Arg/Pro polymorphism to cervical cancer. Mol Med Rep. 2012;(6): 473–6. DOI: 10.3892/mmr.2012.942.

69. Zhou W.Q., Sheng Q.Y., Sheng Y.H. et al. Expressions of survivin, P16(INK4a), COX-2, and Ki-67 in cervical cancer progression reveal the potential clinical application. Eur J Gynaecol Oncol. 2015;36(1):62–8.

70. Kishore V., Patil A.G. Expression of p16INK4A protein in cervical intraepithelial neoplasia and invasive carcinoma of uterine cervix. J Clin Diagn Res. 2017;11(9):EC17–EC20. DOI: 10.7860/JCDR/2017/29394.10644.

71. White E.A. Manipulation of epithelial differentiation by HPV oncoproteins. Viruses. 2019;11(4):369. DOI: 10.3390/v11040369.


Рецензия

Для цитирования:


Ротару Т.В., Ротару Л.И., Лапочкина Н.П. Генетическая предрасположенность при раке шейки матки. Акушерство, Гинекология и Репродукция. 2020;14(2):218-228. https://doi.org/10.17749/2313-7347.139

For citation:


Rotaru T.V., Rotaru L.I., Lapochikina N.P. Genetic predisposition for cervical cancer. Obstetrics, Gynecology and Reproduction. 2020;14(2):218-228. (In Russ.) https://doi.org/10.17749/2313-7347.139

Просмотров: 1832


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)