Genetic predisposition for cervical cancer

Full Text:


Aim: to assess a role of genetic factors and human papillomavirus (HPV) in developing cervical neoplasia based on analyzing current publications on virus-induced carcinogenesis.

Materials and methods. A systematic overview on publications dedicated to examining genetic predisposition to developing cervical cancer (CC) available in electronic databases was performed by searching in the International Scientific Databases (ISDB) PubMed/MEDLINE as well as manually by accessing enlisted input documents related to the above noted studies. Full-text publications were solely selected for analysis.

Results. CC is a multifactorial disease implicating host genetic predisposition being caused by persistent high oncogenic risk HPV-infection. Immune system plays a major role in HPV-infection. Altered cell-mediated immune response is responsible for impaired potential to HPV eradication. On the other hand, immune evasion contributes to viral persistence and cancer progression. Oncogenes, cancer suppressor genes (Rb and TP53), cytokine (ILs, IFNG) and chemokine (CXCL) genes, the genes involved in antigen processing, as well as an impact for each gene polymorphism or even haplotypes playing a role in cervical carcinogenesis are mainly involved in CC developing.

Conclusion. The data obtained allowed to demonstrate a role for genetic polymorphisms in the genes encoding cytokines, chemokines, diverse receptors as well as those involved in antigen processing, and cancer suppressor genes in perpetuation of HPV-infection.

About the Authors

T. V. Rotaru
Nicolae Testemitanu State University of Medicine and Pharmacy
Moldova, Republic of

Tudor V. Rotaru – МD, Dr Sci Med, Associate Professor, Department of Oncology

165 Вlvd. Shtefanchel Mare, Kishinev MD 2001

L. I. Rotaru
Nicolae Testemitanu State University of Medicine and Pharmacy
Moldova, Republic of

Ludmila I. Rotaru – МD, Dr Sci Biol, Associate Professor, Department of Molecular Biology and Human Genetics

165 Вlvd. Shtefanchel Mare, Kishinev MD 2001

N. P. Lapochikina
Ivanovo State Medical Academy, Health Ministry of Russian Federation
Russian Federation

Nina P. Lapochikina – МD, Dr Sci Med, Associate Professor, Department of Oncology, Obstetrics and Gynecology

8 Sheremetyevskiy Ave., Ivanovo 153012


1. International Agency for Research on Cancer. WHO, 2019. 2 p. Available at: [Accessed: 20.04.2020].

2. Yu L., Fei L., Liu X. et al. Application of p16/Ki-67 dual-staining cytology in cervical cancers. J Cancer. 2019;10(12):2654–60. DOI:10.7150/jca.32743.

3. Leo P.J., Madeleine M.M., Wang S. et al. Defining the genetic susceptibility to cervical neoplasia – A genome-wide association study. PLOS Genetics. 2017;13(8):e1006866. DOI: 10.1371/journal.pgen.1006866.

4. Song D., Li H., Li H., Dai J. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett. 2015;10(2):600–6. DOI: 10.3892/ol.2015.3295.

5. Zhou C., Tuong Z.K., Frazer I.H. Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front Oncol. 2019;9:682. DOI: 10.3389/fonc.2019.00682.

6. Abreu Velez A.M., Howard M.S. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med Sci. 2015;7(5):176–88. DOI: 10.4103/1947-2714.157476.

7. Di Domenico M., Giovane G., Kouidhi S. et al. HPV epigenetic mechanisms related to oropharyngeal and cervix cancers. Cancer Biol Ther. 2018;19(10):850–7. DOI: 10.1080/15384047.2017.1310349.

8. Kuguyo O., Tsikai N., Thomford N.E. et al. Genetic susceptibility for cervical cancer in African populations: what are the host genetic drivers? OMICS. 2018;22(7):468–83. DOI: 10.1089/omi.2018.0075.

9. Chrysostomou A.C., Stylianou D.C., Constantinidou A., Kostrikis L.G. Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing. Viruses. 2018;10(12). pii: E729. DOI: 10.3390/v10120729.

10. Koliopoulos G., Nyaga V.N., Santesso N. et al. Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst Rev. 2017;8:CD008587. DOI: 10.1002/14651858.CD008587.pub2.

11. Bonello K., Blundell R. The role of the human papillomavirus (HPV) in cervical cancer: A review about HPV-induced carcinogenesis and its epidemiology, diagnosis, management and prevention. Int J Med Students. 2016;4(1):26–32. DOI: 10.5195/ijms.2016.146.

12. Guo Y., Zhang X., Xu Q. et al. Human papillomavirus 16 oncoprotein E7 retards mitotic progression by blocking Mps1-MAP4 signaling cascade. Oncogene. 2019;38(31):5959–70. DOI: 10.1038/s41388-019-0851-1.

13. Pontillo A., Bricher P., Leal V.N. et al. Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development. J Med Virol. 2016;88(9):1646–51. DOI: 10.1002/jmv.24514.

14. Alves J.J.P., De Medeiros Fernandes T.A.A., De Araújo J.M.J. et al. Th17 response in patients with cervical cancer. Oncol Lett. 2018;16(5):6215–27. DOI:10.3892/ol.2018.9481.

15. Mehta A.M., Mooij M., Branković I. et al. Cervical carcinogenesis and immune response gene polymorphisms: a review. J Immun Res. 2017;2017:8913860. DOI: 10.1155/2017/8913860.

16. Guo C., Wen L., Song J.K. et al. Significant association between interleukin‐10 gene polymorphisms and cervical cancer risk: a meta‐analysis. Oncotarget. 2018;9(15):12365–75. DOI: 10.18632/oncotarget.24193.

17. Yao X., Huang J., Zhong H. et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 2014;141(2):125–39. DOI: 10.1016/j.pharmthera.2013.09.004.

18. Ho L.J., Luo S.F., Lai J.H. Biological effects of interleukin-6: clinical applications in autoimmune diseases and cancers. Biochem Pharmacol. 2015;97(1):16–26. DOI: 10.1016/j.bcp.2015.06.009.

19. Song Z., Lin Y., Ye X. et al. Expression of IL-1α and IL-6 is associated with progression and prognosis of human cervical cancer. Med Sci Monit. 2016;22:4475–81. DOI: 10.12659/MSM.898569.

20. Gupta M.K., Singh R., Banerjee M. Cytokine gene polymorphisms and their association with cervical cancer: A North Indian study. Egypt J Med Hum Genet. 2016;17(2):155–63. DOI: 10.1016/j.ejmhg.2015.10.005.

21. Xu J., Ye Y., Zhang H. et al. Diagnostic and prognostic value of serum Interleukin-6 in colorectal cancer. Medicine (Baltimore). 2016;95(2):e2502. DOI: 10.1097/MD.0000000000002502.

22. Chen M.F., Lin P.Y., Wu C.F. et al. IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. PLoS One. 2013;8(4):e61901. DOI: 10.1371/journal.pone.0061901.

23. Kelly P.N., Romero D.L., Yang Y. et al. Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy. J Exp Med. 2015;212(13):2189–201. DOI: 10.1084/jem.20151074.

24. Inoue A., Obayashi K., Sonoda Y. et al. Regulation of matrix metalloproteinase-1 and alpha-smooth muscle actin expression by interleukin-1 alpha and tumour necrosis factor alpha in hepatic stellate cells. Cytotechnology. 2017;69(3):461–8. DOI: 10.1007/s10616-016-9948-3.

25. Kushwah A.S., Gupta M.K., Singh R., Banerjee M. et al. Cytokine gene variants and treatment outcome of cisplatin-based concomitant chemoradiotherapy in cervical cancer. Br J Biomed Sci. 2020;77(2):81–6. DOI: 10.1080/09674845.2020.1714164.

26. Wang L., Zhao W., Hong J. et al. Association between IL1B gene and cervical cancer susceptibility in Chinese Uygur population: a case-control study. Mol Genet Genomic Med. 2019;7(8):e779. DOI: 10.1002/mgg3.779.

27. Ainouze M., Rochefort P., Parroche P. et al. Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathog. 2018;14(8):e1007158. DOI: 10.1371/journal.ppat.1007158.

28. Heeren A.M., Kenter G.G., Jordanova E.S., de Gruijl T.D. CD14+ macrophage-like cells as the linchpin of cervical cancer perpetrated immune suppression and early metastatic spread: A new therapeutic lead? Oncoimmunology. 2015;4(6):e1009296. DOI: 10.1080/2162402X.2015.1009296.

29. Liu N., Song Y., Shi W. IFN-γ +874 T/A polymorphisms contributes to cervical cancer susceptibility: a meta-analysis. Int J Clin Exp Med. 2015;8(3):4008–15.

30. Heeren A.M., Koster B.D., Samuels S. et al. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res. 2014;3(1):48–58. DOI: 10.1158/2326-6066.CIR-14-0149.

31. Zhang J., Jin S., Li X. et al. Human papillomavirus type 16 disables the increased natural killer cells in early lesions of the cervix. J Immunol Res. 2019;2019:9182979. DOI: 10.1155/2019/9182979.

32. Sun Y., Lu Y., Pen Q. et al. Interferon gamma +874 T/A polymorphism increases the risk of cervical cancer: evidence from a meta-analysis. Tumour Biol. 2015;36(6):4555–64. DOI: 10.1007/s13277-015-3100-4.

33. Shiiba M., Saito K., Yamagami H. et al. Interleukin-1 receptor antagonist (IL1RN) is associated with suppression of early carcinogenic events in human oral malignancies. Int J Oncol. 2015;46(5):1978–84. DOI: 10.3892/ijo.2015.2917.

34. Rai H., Sinha N., Kumar S. et al. Interleukin-1 gene cluster polymorphisms and their association with coronary artery disease: separate evidences from the largest case-control study amongst North Indians and an updated meta-analysis. PLoS One. 2016;11(4):e0153480. DOI: 10.1371/journal.pone.0153480.

35. Sousa H., Santos A.M., Catarino R. et al. IL-1RN VNTR polymorphism and genetic susceptibility to cervical cancer in Portugal. Mol Biol Rep. 2012;39(12):10837–42. DOI: 10.1007/s11033-012-1979-z.

36. Li L., Ma Y., Liu S. et al. Interleukin 10 promotes immune response by increasing the survival of activated CD8+ T cells in human papillomavirus 16-infected cervical cancer. Tumour Biol. 2016;37:16093–101. DOI: 10.1007/s13277-016-5466-3.

37. Osiagwu D.D., Azenabor A.E., Osijirin A.A. et al. Evaluation of interleukin 8 and interleukin 10 cytokines in liquid based cervical cytology samples. Pan Afr Med J. 2019;32:148. DOI: 10.11604/pamj.2019.32.148.16314.

38. Guo C., Wen L., Song J.K. et al. Significant association between interleukin-10 gene polymorphisms and cervical cancer risk: a meta-analysis. Oncotarget. 2018;9(15):12365–75. DOI: 10.18632/oncotarget.24193.

39. Atoum M.F. ACC interleukin-10 gene promoter haplotype as a breast cancer risk factor predictor among Jordanian females. Onco Targets Ther. 2016:9 3353–7. DOI: 10.2147/OTT.S101628.

40. Singhal P., Kumar A., Bharadwaj S. et al. Association of IL-10 GTC haplotype with serum level and HPV infection in the development of cervical carcinoma. Tumour Biol. 2015;36(4):2287–98. DOI: 10.1007/s13277-014-2836-6.

41. Wang S., Sun H., Jia Y. et al. Association of 42 SNPs with genetic risk for cervical cancer: an extensive meta-analysis. BMC Med Genet. 2015;16:25. DOI: 10.1186/s12881-015-0168-z.

42. Du G.H., Wang J.K., Richards J.R., Wang J.J. Genetic polymorphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. Int Immunopharmacol. 2019;66:154–61. DOI: 10.1016/j.intimp.2018.11.015.

43. Berti F.C.B., Pereira A.P.L., Cebinelli G.C.M. et al. The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma. Cytokine Growth Factor Rev. 2017;34:1–13. DOI: 10.1016/j.cytogfr.2017.03.002.

44. Wang Y., Liu X.H., Li Y.H., Li O. The paradox of IL-10-mediated modulation in cervical cancer. Biomed Rep. 2013;1(3):347–51. DOI: 10.3892/br.2013.69.

45. Torres-Poveda K., Bahena-Román M., Madrid-González C. et al. Role of IL-10 and TGF-β1 in local immuno suppression in HPV-associated cervical neoplasia. World J Clin Oncol. 2014;5(4):753–63. DOI: 10.5306/wjco.v5.i4.753.

46. Schrevel M., Karim R., ter Haar N.T. et al. CXCR7 expression is associated with disease-free and disease-specific survival in cervical cancer patients. Br J Cancer. 2012;106(9):1520–5. DOI: 10.1038/bjc.2012.110.

47. Wang C., Cheng H., Li Y. Role of SDF-1 and CXCR4 in the proliferation, migration and invasion of cervical cancer. Pak J Pharm Sci. 2016;29(6 Spec):2151–4.

48. Song Z., Zhang X., Ye X. et al. High expression of stromal cell-derived factor 1 (SDF-1) and NF-κB predicts poor prognosis in cervical cancer. Med Sci Monit. 2017;23:151–7. DOI: 10.12659/MSM.899319.

49. Yin G., Zhu T., Li J. et al. CXCL12 rs266085 and TNF-α rs1799724 polymorphisms and susceptibility to cervical cancer in a Chinese population. Int J Clin Exp Pathol. 2015;8(5):5768–74.

50. Sangwaiya A., Gill M., Bairwa S. et al. Utility of P16/INK4a and Ki-67 in preneoplastic and neoplastic lesions of cervix. Iran J Pathol. 2018;13(3):308–16.

51. Zanotta N., Tornesello M.L., Annunziata C. et al. Candidate soluble immune mediators in young women with high-risk human papillomavirus infection: high expression of chemokines promoting angiogenesis and cell proliferation. PLoS One. 2016;11(3):e0151851. DOI: 10.1371/journal.pone.0151851.

52. Zhang X., Shen D. p16INK4a and Ki-67 measurement predict progression of cervical low-grade squamous intraepithelial lesion. Int J Clin Exp Pathol. 2018;11(8):4109–16.

53. Pavlidou E., Daponte A., Egea R. et al. Genetic polymorphisms of FAS and EVER genes in a Greek population and their susceptibility to cervical cancer. BMC Cancer. 2016;16(1):923. DOI: 10.1186/s12885-016-2960-3.

54. Tan S.C., Ismail M.P., Duski D.R. et al. FAS c.-671A>G polymorphism and cervical cancer risk: a case-control study and meta-analysis. Cancer Genet. 2017;211:8–25. DOI: 10.1016/j.cancergen.2017.01.004.

55. Kedhari Sundaram M., Raina R., Afroze N. et al. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci Rep. 2019;39(8). pii: BSR20190720. DOI: 10.1042/BSR20190720.

56. Wu S., Wang S., Fu Y. et al. A novel mechanism of rs763110 polymorphism contributing to cervical cancer risk by affecting the binding affinity of C/EBPβ and OCT1 complex to chromatin. Int J Cancer. 2017;140(4):756–63. DOI:10.1002/ijc.30490.

57. Pandey N.O., Chauhan A.V., Raithatha N.S. et al. Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Scientific Reports. 2019;9(1):9729. DOI: 10.1038/s41598-019-46077-z.

58. Duffy L., O'Reilly S. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. Immunotargets Ther. 2016;5:69–80. DOI: 10.2147/ITT.S89795.

59. Nischalke H.D., Coenen M., Berger C. et al. The toll-like receptor 2 (TLR2) -196 to -174 del/ins polymorphism affects viral loads and susceptibility to hepatocellular carcinoma in chronic hepatitis C. Int J Cancer. 2012;130(6):1470–5. DOI: 10.1002/ijc.26143.

60. Yang X., Cheng Y., Li C. The role of TLRs in cervical cancer with HPV infection: a review. Signal Transduct Target Ther. 2017;2:17055. DOI: 10.1038/sigtrans.2017.55.

61. Safaeian M., Johnson L.G., Yu K. et al. Human leukocyte antigen class I and II alleles and cervical adenocarcinoma. Front Oncol. 2014;4:119. DOI: 10.3389/fonc.2014.00119.

62. Hasim A., Abudula M., Aimiduo R. et al. Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One. 2012;7(9):e44952. DOI: 10.1371/journal.pone.0044952

63. Mehta A.M, Spaans V.M, Mahendra N.B et al. Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations. Immunogenetics. 2015;67(5–6):267–75. DOI: 10.1007/s00251-015-0834-5.

64. Alsbeih G., Elsebaie M., Almanea H. et al. HPV infection in cervical and other cancers. J Cancer Biol Res. 2016;4(2):1079.

65. Sullivan K.D., Galbraith M.D., Andrysik Z., Espinosa J.M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–43. DOI: 10.1038/cdd.2017.174.

66. Roshani D., Abdolahi A., Rahmati S. Association of p53 codon 72 Arg>Pro polymorphism and risk of cancer in Iranian population: a systematic review and meta-analysis. Med J Islam Repub Iran. 2017;31(1):896–902. DOI: 10.14196/mjiri.31.136

67. Coelho A., Nogueira A., Soares S. et al. TP53 Arg72 Pro polymorphism is associated with increased overall survival but not response to therapy in Portuguese/Caucasian patients with advanced cervical cancer. Oncol Lett. 2018;15(5):8165–71. DOI: 10.3892/ol.2018.8354.

68. Eltahir H.A., Elhassan A.M., Ibrahim M.E. Contribution of retinoblastoma LOH and the p53 Arg/Pro polymorphism to cervical cancer. Mol Med Rep. 2012;(6): 473–6. DOI: 10.3892/mmr.2012.942.

69. Zhou W.Q., Sheng Q.Y., Sheng Y.H. et al. Expressions of survivin, P16(INK4a), COX-2, and Ki-67 in cervical cancer progression reveal the potential clinical application. Eur J Gynaecol Oncol. 2015;36(1):62–8.

70. Kishore V., Patil A.G. Expression of p16INK4A protein in cervical intraepithelial neoplasia and invasive carcinoma of uterine cervix. J Clin Diagn Res. 2017;11(9):EC17–EC20. DOI: 10.7860/JCDR/2017/29394.10644.

71. White E.A. Manipulation of epithelial differentiation by HPV oncoproteins. Viruses. 2019;11(4):369. DOI: 10.3390/v11040369.


For citations:

Rotaru T.V., Rotaru L.I., Lapochikina N.P. Genetic predisposition for cervical cancer. Obstetrics, Gynecology and Reproduction. 2020;14(2):218-228. (In Russ.)

Views: 1262

ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)