Obstetrics, Gynecology and Reproduction

Advanced search

Laboratory monitoring of COVID-19 patients and importance of coagulopathy markers

Full Text:


The pandemic of a novel coronavirus infection COVID-19 has become a real challenge to the mankind and medical community and has raised a number of medical and social issues. Based on the currently available information on COVID-19 clinical cases, it follows that COVID-19 patients in critical condition exhibit a clinical picture of disseminated intravascular coagulation (DIC), septic shock with developing multiple organ failure, which justifies use of anticoagulant therapy in COVID-19 patients. In addition to isolating virus RNA from biological material and polymerase chain reaction diagnostics, use of simple and easily accessible laboratory blood markers is necessary for management of COVID-19 patients. If the activation of coagulation processes is sufficient enough, consumption of platelets and blood clotting factors can be diagnosed by laboratory methods as prolongation of routine blood clotting tests and increasing thrombocytopenia. Hyperfibrinogenemia, increased D-dimer level, prolonged prothrombin time, thrombocytopenia, lymphopenia, leukocytopenia, increased concentration of interleukin-6 and ferritin are observed in most COVID19 patients. The degree of increase in these changes correlates with severity of the inflammatory process and serves as a prognostically unfavorable sign. Here we discuss value of laboratory monitoring playing an essential role in such pathological crisis that contributes to patient screening, diagnosis as well as further monitoring, treatment and rehabilitation.

About the Authors

J. H. Khizroeva
Sechenov University
Russian Federation

Jamilya H. Khizroeva – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology of Institute of Children's Health

62 Str. Zemlyanoi Val, Moscow 109004

Researcher ID: F-8384-2017 
Scopus Author ID: 57194547147 
eLibrary SPIN: 8225-4976


A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya, MD, Dr Sci Med, Academician of the Russian Academy of Sciences, Professor, Head of the Department of Obstetrics and Gynecology of Institute of Children's Health

62 Str. Zemlyanoi Val, Moscow 109004

Researcher ID: M-5660-2016. 
Scopus Author ID: 6602363216 
eLibrary SPIN: 7538-2966


V. O. Bitsadze
Sechenov University
Russian Federation

Victoria O. Bitsadze, MD, Dr Sci Med, Professor of the Russian Academy of Sciences, Professor of Obstetrics and Gynecology Department, Institute of Children's Health

62 Str. Zemlyanoi Val, Moscow 109004

Researcher ID: F-8409-2017
Scopus Author ID: 6506003478
eLibrary SPIN: 5930-0859


M. V. Tretyakova
«Medical Center» LLC
Russian Federation

Maria V. Tretyakova – MD, PhD, Obstetrician-Gynecologist, Department of Gynecology

15/1 Timura Frunze St., 119021, Moscow

E. V. Slukhanchuk
Petrovsky National Research Centre of Surgery
Russian Federation

Ekaterina V. Slukhanchuk – Head of the gynecological Department

2 Abrikosovsky pereulok, Moscow, 119991

I. Elalamy
Sechenov University; Medicine Sorbonne University; University of Montpellier

Ismail Elalamy – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology, N. F. Filatov Clinical Institute of Children’s Health, Sechenov University; Professor, Medicine Sorbonne University; Director of Hematology, Department of Thrombosis Center, Hospital Tenon

62 Str. Zemlyanoi Val, Moscow 109004, 

12 Rue de l’École de Médecine, 75006 Paris, 

4 Rue de la Chine, 75020 Paris

Scopus Author ID: 7003652413
Researcher ID: AAC-9695-2019


J.-C. Gris
Sechenov University; Université de Montpellier

Jean-Christophe Gris – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology, N. F. Filatov Clinical Institute of Children’s Health, Sechenov University; University of Montpellier

62 Str. Zemlyanoi Val, Moscow 109004, 


8Researcher ID: AAA-2923-2019

L. S. Radetskaya
Sechenov University
Russian Federation

Liudmila S. Radetskaya – MD, PhD, Associate Professor, Department of Obstetrics and Gynecology, N. F. Filatov Clinical Institute of Children’s Health

62 Str. Zemlyanoi Val, Moscow 109004

N. A. Makatsariya
Sechenov University
Russian Federation

Nataliya A. Makatsariya – MD, PhD, Associate Professor, Department of Obstetrics and Gynecology, N. F. Filatov Clinical Institute of Children’s Health

62 Str. Zemlyanoi Val, Moscow 109004

Ya. Yu. Sulina
Sechenov University
Russian Federation

Yana Yu. Sulina – MD, Assistant, Department of Obstetrics and Gynecology, N. F. Filatov Clinical Institute of Children’s Health

62 Str. Zemlyanoi Val, Moscow 109004

Scopus Author ID: 57194140583
ResearcherID: S-9569-2018


V. I. Tsibizova
Almazov National Medical Research Centre
Russian Federation

Valentina I. Tsibizova – MD, Departments of Functional and Ultrasound Diagnostics

2 Akkuratova Str., Saint Petersburg 197341

A. S. Shkoda
City Clinical Hospital No 67 named after L.A. Vorokhobov
Russian Federation

Andrey S. Shkoda – MD, Dr Sci Med, Professor, Chief Physician

2/44 Salyama Adilya St., Moscow 123423

D. V. Blinov
Institute for Preventive and Social Medicine; Lapino Clinic Hospital, MD Medical Group; Moscow Haass Medical – Social Institute
Russian Federation

Dmitry V. Blinov – MD, PhD, MBA, Head of Medical and Scientific Affairs, Institute of Preventive and Social Medicine; Neurologist, Lapino Clinic Hospital, MD Medical Group; Faculty Member, Department of Neurology, Psychiatry and Narcology, Moscow Haass Medical–Social Institute

4–10 Sadovaya-Triumfalnaya Str., Moscow 127006, 

1st Uspenskoye Highway, 111, Moscow Region, Odintsovo District, Lapino 143081, 

5, 1–1a 2nd Brestskaya Str., Moscow 123056

Researcher ID: E-8906-2017



1. Rajgor D.D., Lee M.H., Archuleta S. et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020 Mar 27. pii: S1473-3099(20)30244-9. DOI: 10.1016/S1473-3099(20)30244-9.

2. Tamm M.V. COVID-19 in Moscow: prognoses and scenarios. [Koronavirusnaya infekciya v Moskve: prognozy i scenario]. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya. 2020;13(1):43–51. (In Russ.). DOI: 10.17749/2070-4909.2020.13.1.43-51

3. Goncharova E.V., Donnikov A. E., Kadochnikova V.V. et al. Real-time RT-PCR diagnostics of virus causing COVID-19. [Diagnostika virusa, vyzyvayushchego COVID-19, metodom PCR v real’nom vremeni]. FARMAKOEKONOMIKA. Sovremennaya farmakoekonomika i farmakoepidemiologiya. 2020;13(1):52–63. (In Russ.). DOI: 10.17749/2070-4909.2020.13.1.52-63.

4. Adhikari S.P., Meng S., Wu Y.J. et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29. DOI: 10.1186/s40249-020-00646-x.

5. Dhama K., Sharun K., Tiwari R. et al. Coronavirus Disease 2019 – COVID-19. 2020;2019. [Electronic resource]. Available at: [Accessed: 28.04.2020].

6. Makatsariya A.D., Grigorieva K.N., Mingalimov M.A. Coronavirus disease (COVID-19) and disseminated intravascular coagulation. [Koronavirusnaya infekciya (COVID-19) i sindrom disseminirovannogo vnutrisosudistogo svertyvaniya]. Akusherstvo, ginekologiya i reprodukciya. 2020;14(2):[accepted manuscript]. (In Russ.). DOI: 10.17749/2313-7347.132.

7. Interim guidelines «Prevention, diagnosis and therapy of new coronavirus infection (COVID-19)». Version 6 (28.04.2020). [Vremennye metodicheskie rekomendacii. Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). Versiya 6 (28.04.2020)]. Ministerstvo zdravoohraneniya Rossijskoj Federacii, 2020. 165 s. (In Russ.). Available at: [Accessed: 28.04.2020].

8. Weitz J.S., Beckett S. J., Coenen A.R. et al. Intervention serology and interaction substitution: modeling the role of ‘shield immunity’ in reducing COVID-19 epidemic spread. MedRxiv. 2020. DOI: 10.1101/2020.04.01.20049767.

9. Coronavirus disease (COVID-19) technical guidance: Surveillance and case definitions. [Electronic resource]. WHO, 2020. Available at: [Accessed: 28.04.2020].

10. Lippi G., Salvagno GL, Pegoraro M. et al. Assessment of immune response to SARS-CoV-2 with fully automated MAGLUMI 2019-nCoV IgG and IgM chemiluminescence immunoassays. Clin Chem Lab Med. 2020 Apr 16. pii: /j/cclm.ahead-of-print/cclm-2020-0473/cclm2020-0473.xml. DOI: 10.1515/cclm-2020-0473. [Epub ahead of print].

11. Hu X., An T., Situ B. et al. Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. MedRxiv. 2020. DOI: 10.1101/2020.03.12.20034231.

12. Liu L., LiuW., Wang S., Zheng S. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) in 238 admitted hospital patients. MedRxiv. 2020. DOI: 10.1101/2020.03.06.20031856.

13. Lassaunière R., Frische A., Harboe Z.B. et al. Evaluation of nine commercial SARS-CoV-2 immunoassays. MedRxiv. 2020. DOI: 10.1101/2020.04.09.20056325.

14. Infantino M., Damiani A., Gobbi FL. et al. Serological assays for SARS-CoV-2 infectious disease: benefits, limitations and perspectives. Isr Med Assoc J. 2020;22:203–10.

15. Makatsariya A.D., Bitsadze V.O., Khizroeva J. Kh. et al. Novel coronavirus infection (COVID-19) and risk groups in obstetrics and gynecology. [Novaya koronavirusnaya infekciya (COVID-19) i gruppy riska v akusherstve i ginekologii]. Akusherstvo, ginekologiya i reprodukciya. 2020;14(2):[accepted manuscript]. (In Russ.). DOI: 10.17749/2313-7347.133.

16. Sun Y., DongY., Wang L. et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoim. 2020 Apr 24: 102473. DOI: 10.1016/j.jaut.2020.102473. [Epub ahead of print].

17. Carboni E., Carta A.R., Carboni E. Can pioglitazone be potentially useful therapeutically in treating patients with covid-19? Med Hypotheses. 2020 Apr 22: 109776. DOI: 10.1016/j.mehy.2020.109776. [Epub ahead of print].

18. Wang F., Hou H., Luo Y. et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020. DOI: 10.1172/jci.insight.137799.

19. Velavan T.P., Meyer C.G. Mild versus severe COVID-19: laboratory markers. Int J Infect Dis. 2020;95:304–7. DOI: 10.1016/j.ijid.2020.04.061. [Epub ahead of print].

20. Zhao W., He L., Xie X., Liu J. The viral load of 2019 novel Coronavirus (COVID-19) has the potential to predict the clinical outcomes. Lancet. 2000 Feb 24. 22 p. Available at: [Accessed: 28.04.2020].

21. Sun S., Cai X., Wang H. et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020;507:174– 80. DOI: 10.1016/j.cca.2020.04.024. [Epub ahead of print].

22. Terpos E., Ntanasis-Stathopoulos I., Elalamy I. et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020 Apr 13. DOI: 10.1002/ajh.25829.

23. Mingalimov M.A., Grigorieva K.N., Tretyakova M.V. et al. Disseminated intravascular coagulation in perinatal medicine. Sindrom disseminirovannogo vnutrisosudistogo svertyvaniya v perinatal’noj medicine]. Akusherstvo, ginekologiya i reprodukciya. 2020;14(1):56– 68. (In Russ.). DOI: 10.17749/2313-7347.2020.14.1.56-68.

24. Josefs T., Barrett T. J., Brown E. J. et al. Neutrophil Extracellular Traps (NETs) promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight. 2020;5(7). pii: 134796. DOI: 10.1172/jci.insight.134796.

25. Adam S.S., Key N.S., Greenberg C.S. D-dimer antigen: current concepts and future prospects. Blood. 2009;113(13):2878–87. DOI: 10.1182/blood-2008-06-165845.

26. Eichinger S., Minar E., Bialonczyk C. et al. D-dimer levels and risk of recurrent venous thromboembolism. JAMA. 2003;290(8):1071–4. DOI: 10.1001/jama.290.8.1071.

27. Verhovsek M., Douketis J.D., Yi Q. Systematic review: D-dimer to predict recurrent disease after stopping anticoagulant therapy for unprovoked venous thromboembolism. Ann Intern Med. 2008;149(7):481–90, W94. DOI: 10.7326/0003-4819-149-7-200810070-00008.

28. Hack C. E. Fibrinolysis in disseminated intravascular coagulation. Semin Thromb Hemost. 2001;27(6):633–8. DOI: 10.1055/s-2001-18867.

29. Wada T., Gando S., Mizugaki A. et al. Coagulofibrinolytic changes in patients with disseminated intravascular coagulation associated with post-cardiac arrest syndrome–fibrinolytic shutdown and insufficient activation of fibrinolysis lead to organ dysfunction. Thromb Res. 2013;132(1):e64–9. DOI: 10.1016/j.thromres.2013.05.010.

30. Llitjos J. F., Leclerc M., Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020 Apr 22. DOI: 10.1111/jth.14869. [Epub ahead of print].

31. Thachil J., Tang N., Gando S. et al. Laboratory haemostasis monitoring in COVID-19. J Thromb Haemost. 2020 Apr 23. DOI: 10.1111/jth.14866. [Epub ahead of print].

32. Klok F.A., Kruipb M. J.H.A, van der Meerc N. J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020 Apr 10. DOI: 10.1016/j.thromres.2020.04.013. [Epub ahead of print].

33. Ranucci M., Ballotta A., Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020 Apr 17. DOI: 10.1111/jth.14854. [Epub ahead of print].

34. Diagnosis and Treatment Protocol for COVID-19 (Trial Version 7). 2020. Available at: [Accessed: 28.04.2020].

35. Yang M., Ng M.H., Li C.K. Thrombocytopenia in patients with severe acute respiratory syndrome (review). Hematology. 2005;10(2):101–5. DOI: 10.1080/10245330400026170.

36. Zhai Z., Li C., Chen Y. et al. Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: a consensus statement before guidelines. Thromb Haemost. 2020 Apr 21. DOI: 10.1055/s-0040-1710019. [Epub ahead of print].

37. Bikdeli B., Madhavan М.V., Jimenez D. et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020 Apr 15. pii: S0735-1097(20)35008-7. DOI: 10.1016/j.jacc.2020.04.031. [Epub ahead of print].

38. Wang W., Knovich M.A., Coffman L.G. et al. Serum ferritin: past, present and future. Biochim Biophys Acta. 2010;1800(8):760–9. DOI: 10.1016/j.bbagen.2010.03.011

39. Knovich M.A., Storey J.A., Coffman L.G. et al. Ferritin for the clinician. Blood Rev. 2009;23(3):95–104. DOI: 10.1016/j.blre.2008.08.001.

40. Blankenhaus B., Braza F., Martins R. et al. Ferritin regulates organismal energy balance and thermogenesis. Mol Metab. 2019;24:64–79. DOI: 10.1016/j.molmet.2019.03.008.

41. Moore C., Ormseth M., Fuchs H. Causes and significance of markedly elevated serum ferritin levels in an academic medical center. J Clin Rheumatol. 2013;19(6):324–8. DOI: 10.1097/RHU.0b013e31829ce01f.

42. Sungkar T., Rozi M. F., Dairi L.B., Zain L.H. Serum ferritin levels: a potential biomarker to represent Child-Turcotte-Pugh score among decompensated liver cirrhosis patients. Malays J Med Sci. 2019;26(2):59–65. DOI: 10.21315/mjms2019.26.2.7.

43. Umer N., Makki M.U., Kiran S.K., Jadoon N.A. Serum ferritin as a predictor of 30 days mortality in patients of decompensated chronic liver disease. J Ayub Med Coll Abbottabad. 2017;29(3):415–8.

44. Tan L., Wang Q., Zhang D. et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):1–3. DOI: 10.1038/s41392-020-0148-4.

45. Lui J., Li H., Luo M. et al. Lymphopenia acted as an adverse factor for severity in patients with COVID-19: a single-centered, retrospective study. Infect Dis. 2020. DOI: 10.21203/

46. Henry B.M. COVID-19, ECMO, and lymphopenia: a word of caution. Lancet Respir Med. 2020;8(4):e24. DOI: 10.1016/S2213-2600(20)30119-3.

47. Li J., Li M., Zheng S. et al. Leukopenia predicts risk for death in critically ill patients with COVID-19 in Wuhan, China: a singlecentered, retrospective study. Lancet Infect Dis. 2020. 26 p. Available at: [Accessed: 28.04.2020].

48. Yang W., Cao Q., Qin L. et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80(4):388–93. DOI: 10.1016/j.jinf.2020.02.016.

49. Li Y.X, Wu W., Yang T. et al. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua Nei Ke Za Zhi. 2020;59(0):E003. (In Chinese). DOI: 3760.10/cma.j.cn112138-20200221-00114. [Epub ahead of print].

50. Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. 2020;505:190–1. DOI: 10.1016/j.cca.2020.03.004.

51. Zhang Y., Xiao M., Zhang S. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. DOI: 10.1056/NEJMc2007575.

52. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–8. DOI: 10.1021/acschemneuro.0c00122.

53. Wu Y., Xu X., Chen Z. et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020 Mar 30. pii: S0889-1591(20)30357-3. DOI: 10.1016/j.bbi.2020.03.031. [Epub ahead of print].

54. Steardo L., Steardo L., Zorec R., Verkhratsky A. Neuroinfection may potentially contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf). 2020 Mar 29:e13473. DOI: 10.1111/apha.13473. [Epub ahead of print].


For citations:

Khizroeva J.H., Makatsariya A.D., Bitsadze V.O., Tretyakova M.V., Slukhanchuk E.V., Elalamy I., Gris J., Radetskaya L.S., Makatsariya N.A., Sulina Y.Yu., Tsibizova V.I., Shkoda A.S., Blinov D.V. Laboratory monitoring of COVID-19 patients and importance of coagulopathy markers. Obstetrics, Gynecology and Reproduction. 2020;14(2):132-147.

Views: 3062

ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)