Obstetrics, Gynecology and Reproduction

Advanced search

Antimicrobial peptides in pregnant women with TORCH infections

Full Text:


Introduction. Analysis for TORCH infections is ordered to simultaneously detect several common infections: Toxoplasmosis, Other infections (syphilis, hepatitis B, chickenpox, Epstein-Barr virus, parvovirus and some others), Rubella, Cytomegalovirus and Herpes simplex virus. Contracting a TORCH infection in pregnancy triggers the synthesis of immune factors including antimicrobial peptides (AMPs).

Aim: to determine the levels of AMPs – lactoferrin, defensin, endotoxin, BPI (bactericidal/permeability-increasing protein) and hepcidin – in the blood serum of pregnant women with TORCH infections.

Materials and methods. The main group included 40 pregnant women with TORCH infections; in 33 of those, pregnancy continued until full-term delivery, and 7 women had miscarriages at the end of the first trimester. The comparison group consisted of 29 pregnant women free of TORCH infections. Blood for AMP measurement was taken in all pregnant women in the first trimester and in women with an ongoing pregnancy also in the III trimester. The control group consisted of 19 healthy non-pregnant women. Serum AMP was determined by enzyme-linked immunosorbent assay (ELISA).

Results. In pregnant women with TORCH infections, there was an increase in the serum levels of lactoferrin, defensin, hepcidin, BPI, and endotoxin; the increase was most pronounced in the first trimester of pregnancy. The decrease in AMP levels observed in the III trimester could be due to the antiviral treatment given to the patients in order to prevent the immunological rejection of the embryo and maintain the normal course of pregnancy.

Conclusion. The increased level of AMPs reflects the enhanced activity of the immune system and represents one of the pathogenetic links of spontaneous abortion.

About the Authors

G. V. Narimanova
Azerbaijan Medical University

Gulzar V. Narimanova – Assistant, Department of Biochemistry

100 Bratiev Mardanovykh St., Baku AZ 1078

I. D. Shakhverdieva
Azerbaijan Medical University

Ilakha D. Shakhverdieva – Researcher, Scientific Research Laboratory, Department of Biochemistry

100 Bratiev Mardanovykh St., Baku AZ 1078

I. A. Kerimova
Azerbaijan Medical University

Ilkhama A. Kerimova – PhD, Assistant, Department of Biochemistry

100 Bratiev Mardanovykh St., Baku AZ 1078

G. A. Jafarova
Azerbaijan Medical University

Gulnara A. Jafarova – PhD (Biology), Senior Researcher, Research Laboratory, Department of Biochemistry

100 Bratiev Mardanovykh St., Baku AZ 1078


1. Bazhenova L.G., Botvinyeva I.A., Renge L.V., Polukarov A.N. The dynamics of prevalence of TORCH-infections of pregnant women. Estimation of risks in primary infections of a fetus. [Dinamika rasprostranennosti TORCH-infekcij u beremennyh. Ocenka riska pervichnogo inficirovaniya ploda]. Akusherstvo. 2012;(1):23–6. (In Russ.).

2. Dolgushina V.F., Kurnosenko I.V., Mezentseva E.A. et al. Prediction of preterm labor in pregnant women with intrauterine infection. [Prognoz prezhdevremennyh rodov u beremennyh zhenshchin s vnutrimatochnoj infekciej]. Sovremennye problemy nauki i obrazovaniya. 2017;(2). (In Russ.). Available at:

3. Makarov O.V., Kovalchuk L.V., Gankovskaya L.V. et al. Miscarriage, infection, and innate immunity. [Nevynashivanie beremennosti, infekciya, vrozhdennyj immunitet]. Moskva: GEOTAR-Media, 2007. 196 s. (In Russ.).

4. Novikova V.A., Penzhoyan G.A., Rybalka E.V. et al. Role of infection in premature rupture of the membranes. [Rol' infekcii v prezhdevremennom razryve plodnyh obolochek]. Rossijskij vestnik akushera-ginekologa. 2012;12(6):35–9. (In Russ.).

5. Ivashova O.N., Lebedeva O.P., Pakhomov S.P. et al. Antimicrobial peptides in the pathogenesis of infectious complications in obstetrics and gynecology. [Antimikrobnye peptidy v patogeneze infekcionnyh oslozhnenij v akusherstve i ginekologii]. Zhurnal akusherstva i zhenskih boleznej. 2014;63(5):73–81. (In Russ.).

6. Du H., Han X., Zhang al. Pathological change of histologic chorioamnionitis and its association with neonatal inflammation. Zhonghua Bing Li Xue Za Zhi. 2015;44(12):864–7.

7. Frew L., Stock S.J. Antimicrobial peptides and pregnancy. Reproduction. 2011;141(6):725–35. DOI: 10.1530/REP-10-0537.

8. Horne A., Stock S., King A. Innate immunity and disorders of female reproductive tract. Reproduction. 2008;135(6):739–49. DOI: 10.1530/REP-07-0564.

9. King A.E., Paltoo A., Kelly R.W. et al. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28(2–3):161–9. DOI: 10.1016/j.placenta.2006.01.006

10. Aleshina G.M., Kokryakov V.N., Shamova O.V. et al. The modern concept of antimicrobial peptides as molecular factors of immunity. [Sovremennaya koncepciya ob antimikrobnyh peptidah kak molekulyarnyh faktorah immuniteta]. Medicinskij akademicheskij zhurnal. 2010;10(4):149–60. (In Russ.).

11. Beisswenger C., Bals R. Antimicrobial peptides in lung inflammation. Chem Immunol Allergy. 2005;86:57–71.

12. Valore E.V., Park C.H., Igreti S.L., Ganz T. Antimicrobial components of vaginal fluid. Am J Obstet Gynecol. 2006;187(3):561–8.

13. Yang Z., Kong B., Mosser D.M., Zhang X. TLRs, macrophages, and NK cells: our understandings of their functions in uterus and ovary. Int Immunopharmacol. 2011;11(10):1442–50. DOI: 10.1016/j.intimp.2011.04.024.

14. Valyshev A.V., Valysheva I.V., Bukharin O.V. The role of lactoferrin in anti-infective protection. [Rol' laktoferrina v protivoinfekcionnoj zashchite]. Uspekhi sovremennoj biologii. 2011;131(2):135–44. (In Russ.).

15. Espinoza J., Chaiworapongsa T., Romero R. et al. Antimicrobial peptides in amniotic fluid: defensins, calprotectin and bacterial/ permeability-increasing protein in patients with microbial invasion of the amniotic cavity, intra-amniotic inflammation, preterm labor and premature rupture of membranes. J Matern Fetal Neonatal Med. 2003;13:2–21. DOI: 10.1080/jmf.

16. Budikhina A.S., Pinegin B.V. Defensins – antimicrobial peptides of neutrophils: properties and functions. [Al'fa-defenziny – antimikrobnye peptidy nejtrofilov: svojstva i funkcii]. Immunologiya. 2008;29(5):317–20. (In Russ.).

17. Xu J., Holzman C.B., Arvidson C.G. et al. Midpregnancy vaginal fluid defensins, bacterial vaginosis, and risk of preterm delivery. Obstet Gynecol. 2008;112(3):524–31. DOI: 10.1097/AOG.0b013e318184209b.

18. Veenstra van Nieuwenhoven A.L., Bouman A., Moes H. et al. Endotoxin-induced cytokine production of monocytes of third-trimester pregnant women compared with women in the follicular phase of the menstrual cycle. Am J Obstet Gynecol. 2003;188(4):1073–7. DOI: 10.1067/mob.2003.263.

19. Hunter H.N., Fulton D.B., Ganz T., Vogel H.J. The solution structure of human hepcidin, a peptide with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002;277(40):37597–603. DOI: 10.1074/jbc.M205305200.

20. Goldenberg R.L., Hauth J.C., Andrews W.W. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–7. DOI: 10.1056/NEJM200005183422007.

21. Pacora P.N., Gervasi M.T., Maymon E. et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. Am J Obstet Gynecol. 2000;183(4):904–10. DOI: 10.1067/mob.2000.108882

22. Yarbrough V.L., Winkle S., Herbst-Kralovetz M.M. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update. 2015;21(3):353–77. DOI: 10.1093/humupd/dmu065.

23. Vogel H.J. Lactoferrin, a bird’s eye view. Biochem Cell Biol. 2012;90(3):233–44. DOI: 10.1139/o2012-016.


For citations:

Narimanova G.V., Shakhverdieva I.D., Kerimova I.A., Jafarova G.A. Antimicrobial peptides in pregnant women with TORCH infections. Obstetrics, Gynecology and Reproduction. 2019;13(3):197-203. (In Russ.)

Views: 647

ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)