Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Visual impairments associated with the treatment of malignant tumors of the female reproductive system: a literature review and practical recommendations for oncogynecologists

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.661

Abstract

Ophthalmictoxicity has become increasingly relevant upon introduction of novel anticancer agents – targeted therapies, immunotherapies, and endocrine treatments. Women with malignancies of the reproductive system, including ovarian, endometrial, and cervical cancers have been receiving treatments associated with potential visual impairments more frequently. This review consolidates the data on ocular adverse events associated with key drug classes used in gynecologic oncology: BRAF (B-Raf proto-oncogene, serine/threonine kinase) inhibitors, MEK inhibitors (mitogen-activated protein kinase kinase) inhibitors, immune checkpoint inhibitors (ICIs), including PD-1 (programmed cell death protein 1), PD-L1 (programmed cell death-ligand 1), and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), antiangiogenic agents targeting VEGF (vascular endothelial growth factor) and VEGFR (vascular endothelial growth factor receptor), as well as selective estrogen receptor modulators (SERMs), aromatase inhibitors, and PARP (poly(ADP-ribose) polymerase) inhibitors. Particular attention is paid to the most common and clinically significant toxicities, including uveitis, keratitis, dry eye syndrome, macular edema, retinopathy, optic neuritis, and rarer but severe complications such as retinal vein occlusion and retinal detachment. In addition, it also presents differentiated approaches to diagnosing and managing ophthalmic toxicity related to the specific drug class. The importance of multidisciplinary collaboration between oncologists, gynecologists, and ophthalmologists is emphasized to ensure timely identification and management of visual impairments. Practical recommendations are provided for screening, monitoring, and managing patients at risk of ocular complications, including referral algorithms and treatment modification strategies. The article aims to increase awareness among gynecologic oncologists regarding ocular toxicity and optimize the clinical management of affected patients.

About the Authors

Y. A. Chuikova
Meir Medical Center, Clalit Health Services
Israel

Yelyzaveta A. Chuikova, MD

59 Tchernichovsky Str., Kfar Saba 44281



O. A. Odintsova
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Olga A. Odintsova

4 Mitrofana Sedina Str., Krasnodar 350063



D. V. Skalozub
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Dmitriy V. Skalozub

4 Mitrofana Sedina Str., Krasnodar 350063



A. G. Antonyuk
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Artem G. Antonyuk

4 Mitrofana Sedina Str., Krasnodar 350063



A. A. Kabartai
Berbekov Kabardino-Balkarian State University
Russian Federation

Anzor A. Kabartai

173 Chernyshevsky Str., Nalchik 360004



A. N. Nurmamatova
Pirogov Russian National Research Medical University (Pirogov Uuniversity), Ministry of Health of the Russian Federation
Russian Federation

Azema N. Nurmamatova

1 Ostrovityanova Str., Moscow 117513



R. M. Azimov
Pirogov Russian National Research Medical University (Pirogov Uuniversity), Ministry of Health of the Russian Federation
Russian Federation

Rasim M. Azimov

1 Ostrovityanova Str., Moscow 117513



P. A. Snatenkova
Pirogov Russian National Research Medical University (Pirogov Uuniversity), Ministry of Health of the Russian Federation
Russian Federation

Polina A. Snatenkova

1 Ostrovityanova Str., Moscow 117513



A. A. Silantyev
Pirogov Russian National Research Medical University (Pirogov Uuniversity), Ministry of Health of the Russian Federation
Russian Federation

Aleksey A. Silantyev

1 Ostrovityanova Str., Moscow 117513



S. R. Osina
Pirogov Russian National Research Medical University (Pirogov Uuniversity), Ministry of Health of the Russian Federation
Russian Federation

Sofya R. Osina

1 Ostrovityanova Str., Moscow 117513



D. S. Minasyan
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

David S. Minasyan

4 Mitrofana Sedina Str., Krasnodar 350063



S. A. Lashevich
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Sofya A. Lashevich

4 Mitrofana Sedina Str., Krasnodar 350063



I. A. Isaeva
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Inna A. Isaeva

4 Mitrofana Sedina Str., Krasnodar 350063



E. A. Rukhlyadyeva
Kirov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ekaterina A. Rukhlyadyeva

112 Karl Marx Str., Kirov 610027



References

1. Darenskaya A.D., Rumyantsev A.A., Gutorov S.L., Tyulyandina A.S. Evolution of systemic therapy for disseminated endometrial cancer: literature review. [Evolyuciya sistemnoj lekarstvennoj terapii disseminirovannogo raka endometriya. Obzor literatury]. Zlokachestvennye opuholi. 2023;13(2):80–98. (In Russ.). https://doi.org/10.18027/2224-5057-2023-13-2-6.

2. Kedrova A.G. Immunotherapy in patients with cervical cancer. [Immunoterapiya u bol'nyh rakom shejki matki]. Opuholi zhenskoj reproduktivnoj sistemy. 2020;16(2):72–7. (In Russ.). https://doi.org/10.17650/1994-4098-2020-16-2-72-77.

3. Ashrafyan L.A., Kiselev V.I., Muizhnek E.L. et al. Current principles of effective therapy for ovarian cancer. [Sovremennye principy effektivnoj terapii raka yaichnikov]. Opuholi zhenskoj reproduktivnoj sistemy. 2015;11(2):68–75. (In Russ.). https://doi.org/10.17650/1994-4098-2015-11-2-68-75.

4. Mudunov A.M., Ignatova A.V., Morozova A.S. et al. Combination of concurrent targeted and immune-therapy with nivolumab and cetuximab: new perspectives for squamous cell carcinoma treatment. [Kombinirovannaya immunotargetnaya terapiya nivolumabom i cetuksimabom: novye vozmozhnosti v lechenii ploskokletochnogo raka golovy i shei]. Opuholi golovy i shei. 2020;10(3):111–7. (In Russ.). https://doi.org/10.17650/2222-1468-2020-10-3-111-117.

5. Shinde A., Panchal K., Katke S. et al A. Tyrosine kinase inhibitors as next generation oncological therapeutics: current strategies, limitations and future perspectives. Therapie. 2022;77(4):425–43. https://doi.org/10.1016/j.therap.2021.10.010.

6. Schneider B.J., Naidoo J., Santomasso B.D. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO Guideline Update. J Clin Oncol. 2021;39(36):4073–126. https://doi.org/10.1200/JCO.21.01440.

7. Thompson J.A., Schneider B.J,. Brahmer J. et al. Management of Immunotherapy-Related Toxicities, Version 1.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20(4):387–405. https://doi.org/10.6004/jnccn.2022.0020.

8. Liu X., Wang Z., Zhao C. et al. Clinical diagnosis and treatment recommendations for ocular toxicities of targeted therapy and immune checkpoint inhibitor therapy. Thorac Cancer. 2020;11(3):810–8. https://doi.org/10.1111/1759-7714.13327.

9. Canestraro J., Hultcrantz M., Modi S. et al. Refractive shifts and changes in corneal curvature associated with antibody-drug conjugates. Cornea. 2022;41(6):792–801. https://doi.org/10.1097/ICO.0000000000002934.

10. Kim S.K., Ursell P., Coleman R.L. et al. Mitigation and management strategies for ocular events associated with tisotumabvedotin. Gynecol Oncol. 2022;165(2):385–92. https://doi.org/10.1016/j.ygyno.2022.02.010.

11. Coleman R.L., Lorusso D., Gennigens C. et al. Efficacy and safety of tisotumabvedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22(5):609–19. https://doi.org/10.1016/S1470-2045(21)00056-5.

12. Matulonis U.A., Lorusso D., Oaknin A. et al. Efficacy and safety of Mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol. 2023;41(13):2436–45. https://doi.org/10.1200/JCO.22.01900.

13. Vergote I., Martin A.G., Fujiwara K. et al. LBA9 innovaTV 301/ENGOT-cx12/GOG-3057: a global, randomized, open-label, phase III study of tisotumab vedotin vs investigator’s choice of chemotherapy in 2L or 3L recurrent or metastatic cervical cancer. Ann Oncol. 2023;34:S1276–S1277. https://doi.org/10.1016/j.annonc.2023.10.029.

14. Vergote I., Van Nieuwenhuysen E., O'Cearbhaill R.E. et al. Tisotumab vedotin in combination with carboplatin, pembrolizumab, or bevacizumab in recurrent or metastatic cervical cancer: results from the innovaTV 205/GOG-3024/ENGOT-cx8 study. J Clin Oncol. 2023;41(36):5536–49. https://doi.org/10.1200/JCO.23.00720.

15. Tisotumab Vedotin-tftv. Am J Health Syst Pharm. 2022;79(3):120–2. https://doi.org/10.1093/ajhp/zxab418.

16. Moore K.N., Angelergues A., Konecny G.E. et al. Mirvetuximab soravtansine in FRα-positive, platinum-resistant ovarian cancer. N Engl J Med. 2023;389(23):2162–74. https://doi.org/10.1056/NEJMoa2309169.

17. Van Gorp T., Moore K.N., Konecny G.E. et al. Patient-reported outcomes from the MIRASOL trial evaluating mirvetuximabsoravtansine versus chemotherapy in patients with folate receptor α-positive, platinum-resistant ovarian cancer: a randomised, open-label, phase 3 trial. Lancet Oncol. 2025;26(4):503–15. https://doi.org/10.1016/S1470-2045(25)00021-X.

18. Moore K.N., Oza A.M., Colombo N. et al. Phase III, randomized trial of mirvetuximabsoravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol. 2021;32(6):757–65. https://doi.org/10.1016/j.annonc.2021.02.017.

19. Farooq A.V., Esposti S.D., Popat R. et al. Corneal epithelial findings in patients with multiple myeloma treated with antibody-drug conjugate belantamab mafodotin in the pivotal, randomized, DREAMM-2 study. Ophthalmol Ther. 2020;9(4):889–911. https://doi.org/10.1007/s40123-020-00280-8.

20. Mirvetuximab Soravtansine-gynx. Am J Health Syst Pharm. 2023;80(7):395–7. https://doi.org/10.1093/ajhp/zxad001.

21. Jhaveri K.L., Wang X.V., Makker V. et al. Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: results from the NCI-MATCH trial (EAY131) subprotocol Q. Ann Oncol. 2019;30(11):1821–30. https://doi.org/10.1093/annonc/mdz291.

22. Greenblatt K., Khaddour K. Trastuzumab. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025 Jan.

23. Modi S., Jacot W., Yamashita T. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022;387(1):9–20. https://doi.org/10.1056/NEJMoa2203690.

24. Meric-Bernstam F., Makker V., Oaknin A. et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J Clin Oncol. 2024;42(1):47–58. https://doi.org/10.1200/JCO.23.02005.

25. Narayan P., Dilawari A., Osgood C. et al. US Food and Drug Administration Approval Summary: fam-trastuzumab deruxtecan-nxki for human epidermal growth factor receptor 2-low unresectable or metastatic breast cancer. J Clin Oncol. 2023;41(11):2108–16. https://doi.org/10.1200/JCO.22.02447.

26. Santin A., McNamara B., Siegel E.R. et al. Preliminary results of a phase II trial with sacituzumab govitecan-hziy in patients with recurrent endometrial carcinoma overexpressing Trop-2. J Clin Oncol. 2023;41(16):5599.

27. Bardia A., Hurvitz S.A., Tolaney S.M. et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–41. https://doi.org/10.1056/NEJMoa2028485.

28. Tagawa S.T., Balar A.V., Petrylak D.P. et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39(22):2474–85. https://doi.org/10.1200/JCO.20.03489.

29. Schlam I., Swain S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. NPJ Breast Cancer. 2021;7(1):56. https://doi.org/10.1038/s41523-021-00265-1.

30. Diver E.J., Foster R., Rueda B.R., Growdon W.B. The therapeutic challenge of targeting HER2 in endometrial cancer. Oncologist. 2015;20(9):1058–68. https://doi.org/10.1634/theoncologist.2015-0149.

31. National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Uterine Neoplasms. Version: 3.2025. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1473. [Accessed: 12.05.2025].

32. Fortes B.H., Tailor P.D., Dalvin L.A. Ocular toxicity of targeted anticancer agents. Drugs. 2021;81(7):771–823. https://doi.org/10.1007/s40265-021-01507-z.

33. Orlandi A., Fasciani R., Cassano A. et al. Trastuzumab-induced corneal ulceration: successful no-drug treatment of a "blind" side effect in a case report. BMC Cancer.2015;15:973. https://doi.org/10.1186/s12885-015-1969-3.

34. Saleh M., Bourcier T., Noel G. et al. Bilateral macular ischemia and severe visual loss following trastuzumab therapy. Acta Oncol. 2011;50(3):477–8. https://doi.org/10.3109/0284186X.2011.555781.

35. Huillard O., Bakalian S., Levy C. et al. Ocular adverse events of molecularly targeted agents approved in solid tumours: a systematic review. Eur J Cancer. 2014;50(3):638–48. https://doi.org/10.1016/j.ejca.2013.10.016.

36. Swain S.M., Miles D., Kim S.B. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(4):519–30. https://doi.org/10.1016/S1470-2045(19)30863-0.

37. Ma J., Chen W., Hu Z. et al. Rare ocular toxicity induced by pertuzumab/QL1209 in healthy chinese subjects: case reports and whole-exome sequencing analysis. Invest New Drugs. 2022;40(4):861–7. https://doi.org/10.1007/s10637-022-01256-0.

38. Kolbin A.S., Gomon Yu.M., Proskurin M.A., BalykinaYu.E. Efficacy of alectinib in comparison with lorlatinib in patients with ALK-positive non-small cell lung cancer: pharmacoeconomic study. [Effektivnost' primeneniya alektiniba v sravnenii s lorlatinibom u pacientov s ALK-polozhitel'nym nemelkokletochnym rakom legkogo: farmakoekonomicheskoe issledovanie]. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2023;16(3):412–21. (In Russ.). https://doi.org/10.17749/2070-4909/farmakoekonomika.2023.210.

39. Sanaya S.Z., Matsneva I.A., Redkina N.A. et al. Immunohistochemical and molecular diagnosis of inflammatory myofibroblastic tumor of the uterus: a literature review and a clinical case. [Immunogistohimicheskaya i molekulyarnaya diagnostika vospalitel'noj miofibroblasticheskoj opuholi matki: klinicheskoe nablyudenie i obzor literatury]. Arhiv patologii. 2021;83(5):43–8. (In Russ.). https://doi.org/10.17116/patol20218305143.

40. Malik S.M., Maher V.E., Bijwaard K.E. et al. U.S. Food and Drug Administration approval: crizotinib for treatment of advanced or metastatic non-small cell lung cancer that is anaplastic lymphoma kinase positive. Clin Cancer Res. 2014;20(8):2029–34. https://doi.org/10.1158/1078-0432.CCR-13-3077.

41. Yang J.C., Liu G., Lu S. et al. Brigatinib versus alectinib in ALK-positive NSCLC after disease progression on crizotinib: results of phase 3 ALTA-3 trial. J Thorac Oncol. 2023;18(12):1743–755. https://doi.org/10.1016/j.jtho.2023.08.010.

42. Proietti I., Skroza N., Michelini S. et al. BRAF inhibitors: molecular targeting and immunomodulatory actions. Cancers (Basel). 2020;12(7):1823. https://doi.org/10.3390/cancers12071823.

43. Moujaber T., Balleine R.L., Gao B. et al. New therapeutic opportunities for women with low-grade serous ovarian cancer. Endocr Relat Cancer. 2021;29(1):R1–R16. https://doi.org/10.1530/ERC-21-0191.

44. Moujaber T., Etemadmoghadam D., Kennedy C.J. et al. BRAF mutations in low-grade serous ovarian cancer and response to BRAF inhibition. JCO Precis Oncol. 2018;2:1–14. https://doi.org/10.1200/PO.17.00221.

45. Silva R., Moran B., Das S. et al. Investigating a clinically actionable BRAF mutation for monitoring low-grade serous ovarian cancer: a case report. Case Rep Womens Health. 2022;34:e00395. https://doi.org/10.1016/j.crwh.2022.e00395.

46. Lima B., Abreu M.H., Sousa S. et al. Impressive and durable clinical responses obtained with dabrafenib and trametinib in low-grade serous ovarian cancer harbouring a BRAF V600E mutation. Gynecol Oncol Rep. 2022;40:100942. https://doi.org/10.1016/j.gore.2022.100942.

47. Mitra D., Farr M., Nagarajan P. et al. Gynecologic tract melanoma in the contemporary therapeutic era: high rates of local and distant disease progression. Gynecol Oncol. 2022;167(3):483–9. https://doi.org/10.1016/j.ygyno.2022.09.026.

48. Choe C.H., McArthur G.A., Caro I. et al. Ocular toxicity in BRAF mutant cutaneous melanoma patients treated with vemurafenib. Am J Ophthalmol. 2014;158(4):831–7.e2. https://doi.org/10.1016/j.ajo.2014.07.003.

49. Guedj M., Quéant A., Funck-Brentano E. et al. Uveitis in patients with late-stage cutaneous melanoma treated with vemurafenib. JAMA Ophthalmol. 2014;132(12):1421–5. https://doi.org/10.1001/jamaophthalmol.2014.3024.

50. Belum V.R., Rosen A.C., Jaimes N. et al. Clinico-morphological features of BRAF inhibition-induced proliferative skin lesions in cancer patients. Cancer. 2015;121(1):60–8. https://doi.org/10.1002/cncr.28980.

51. Tarım B., Kılıç M. Ocular side effects of Trametinib and Dabrafenib: a case report. J Ophthalmic Inflamm Infect. 2023;13(1):17. https://doi.org/10.1186/s12348-023-00339-0.

52. Sarny S., Neumayer M., Kofler J., El-Shabrawi Y. Ocular toxicity due to Trametinib and Dabrafenib. BMC Ophthalmol. 2017;17(1):146. https://doi.org/10.1186/s12886-017-0541-0.

53. Molero-Senosiain M., Salazar M.L., Camacho I. et al. Retinal vein occlusion in a patient on dabrafenib and trametinib therapy for metastatic melanoma. Cureus. 2022;14(8):e28372. https://doi.org/10.7759/cureus.28372.

54. Tewari K.S., Burger R.A., Enserro D. et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019;37(26):2317–28. https://doi.org/10.1200/JCO.19.01009.

55. Crowley F.J., O'Cearbhaill R.E., Collins D.C. Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer. Cancer Treat Rev. 2021;98:102225. https://doi.org/10.1016/j.ctrv.2021.102225.

56. Ali A., Shah A.A., Jeang L.J. et al. Emergence of ocular toxicities associated with novel anticancer therapeutics: what the oncologist needs to know. Cancer Treat Rev. 2022;105:102376. https://doi.org/10.1016/j.ctrv.2022.102376.

57. Adams N.J., De Alba F. Bilateral rhegmatogenous retinal detachments in a patient taking pazopanib: a case report. Am J Ophthalmol Case Rep. 2022;26:101463. https://doi.org/10.1016/j.ajoc.2022.101463.

58. Francis J.H., Jaben K., Santomasso B.D. et al. Immune checkpoint inhibitor-associated optic neuritis. Ophthalmology. 2020;127(11):1585–9. https://doi.org/10.1016/j.ophtha.2020.05.003.

59. Dalvin L.A., Shields C.L., Orloff M. et al. CHECKPOINT INHIBITOR IMMUNE THERAPY: systemic indications and ophthalmic side effects. Retina. 2018;38(6):1063–78. https://doi.org/10.1097/IAE.0000000000002181.

60. Abu-Rustum N.R., Yashar C.M., Bean S. et al. NCCN Guidelines Insights: Cervical Cancer, Version 1.2020. J Natl Compr Canc Netw. 2020;18(6):660–6. https://doi.org/10.6004/jnccn.2020.0027.

61. Abu-Rustum N., Yashar C., Arend R. et al. Uterine Neoplasms, Version 1.2023, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2023;21(2):181–209. https://doi.org/10.6004/jnccn.2023.0006.

62. Makker V., Colombo N., Casado Herráez A. et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med. 2022;386(5):437–48. https://doi.org/10.1056/NEJMoa2108330.

63. Lorusso D., Xiang Y., Hasegawa K. et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial. Lancet. 2024;403(10434):1341–50. https://doi.org/10.1016/S0140-6736(24)00317-9.

64. Alba-Linero C., Alba E. Ocular side effects of checkpoint inhibitors. Surv Ophthalmol. 2021;66(6):951–9. https://doi.org/10.1016/j.survophthal.2021.01.001.

65. Neves da Silva H.V., Placide J., Duong A. et al. Ocular adverse effects of therapeutic biologics. Ther Adv Ophthalmol. 2022;14:25158414211070878. https://doi.org/10.1177/25158414211070878.

66. Mirza M.R., Chase D.M., Slomovitz B.M., et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med. 2023;388(23):2145–58. https://doi.org/10.1056/NEJMoa2216334.

67. Tewari K.S., Monk B.J., Vergote I. et al. Survival with cemiplimab in recurrent cervical cancer. N Engl J Med. 2022;386(6):544–55. https://doi.org/10.1056/NEJMoa2112187.

68. Francis J.H., Habib L.A., Abramson D.H. et al. Clinical and morphologic characteristics of MEK inhibitor-associated retinopathy: differences from central serous chorioretinopathy. Ophthalmology. 2017;124(12):1788–98. https://doi.org/10.1016/j.ophtha.2017.05.038.

69. Francis J.H., Diamond E.L., Chi P. et al. MEK inhibitor-associated central retinal vein occlusion associated with hyperhomocysteinemia and MTHFR variants. Ocul Oncol Pathol. 2020;6(3):159–63. https://doi.org/10.1159/000501155.

70. Polyanskikh L.S., Petrosyan M.A., Morozkina S.N., Baziyan E.V. Current understanding of selective estrogen receptor modulators. [Sovremennye predstavleniya o selektivnyh modulyatorah receptorov estrogenov]. Zhurnal akusherstva i zhenskih boleznej. 2020;68(6):99–106. (In Russ.). https://doi.org/10.17816/JOWD68699-106.

71. Schüler-Toprak S., Weber F., Skrzypczak M. et al. Expression of estrogen-related receptors in ovarian cancer and impact on survival. J Cancer Res Clin Oncol. 2021;147(9):2555–67. https://doi.org/10.1007/s00432-021-03673-9.

72. Gershenson D.M., Cobb L.P., Sun C.C. Endocrine therapy in the management of low-grade serous ovarian/peritoneal carcinoma: mounting evidence for therelative efficacy of tamoxifen and aromatase inhibitors. Gynecol Oncol. 2020;159(3):601–3. https://doi.org/10.1016/j.ygyno.2020.09.049.

73. Fernandez M.L., Dawson A., Kim H. et al. Hormone receptor expression and outcomes in low-grade serous ovarian carcinoma. Gynecol Oncol. 2020;157(1):12–20. https://doi.org/10.1016/j.ygyno.2019.11.029.

74. Langdon S.P., Gourley C., Gabra H., Stanley B. Endocrine therapy in epithelial ovarian cancer. Expert Rev Anticancer Ther. 2017;17(2):109–17. https://doi.org/10.1080/14737140.2017.1272414.

75. Emons G., Mustea A., Tempfer C. Tamoxifen and endometrial cancer: a janus-headed drug. Cancers (Basel). 2020;12(9):2535. https://doi.org/10.3390/cancers12092535.

76. Herzog T.J. What is the clinical value of adding tamoxifen to progestins in the treatment [correction for treament] of advanced or recurrent endometrial cancer? Gynecol Oncol. 2004;92(1):1–3. https://doi.org/10.1016/j.ygyno.2003.11.014.

77. Whitney C.W., Brunetto V.L., Zaino R.J. et al.; Gynecologic Oncology Group study. Phase II study of medroxyprogesterone acetate plus tamoxifen in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2004;92(1):4–9. https://doi.org/10.1016/j.ygyno.2003.09.018.

78. Pyrhönen S., Ellmén J., Vuorinen J. et al. Meta-analysis of trials comparing toremifene with tamoxifen and factors predicting outcome of antiestrogen therapy in postmenopausal women with breast cancer. Breast Cancer Res Treat. 1999;56(2):133–43. https://doi.org/10.1023/a:1006250213357.

79. Gokulgandhi M.R., Vadlapudi A.D., Mitra A.K. Ocular toxicity from systemically administered xenobiotics. Expert Opin Drug Metab Toxicol. 2012;8(10):1277–91. https://doi.org/10.1517/17425255.2012.708337.

80. Bicer T., Imamoglu G.I., Caliskan S. et al. The effects of adjuvant tamoxifen use on macula pigment epithelium optical density, visual acuity and retinal thickness in patients with breast cancer. Curr Eye Res. 2020;45(5):623–28. https://doi.org/10.1080/02713683.2019.1687725.

81. Mitra S., Lami M.S., Ghosh A. et al. Hormonal therapy for gynecological cancers: how far has science progressed toward clinical applications? Cancers (Basel). 2022;14(3):759. https://doi.org/10.3390/cancers14030759.

82. Serban D., Costea D.O., Zgura A. et al. Ocular side effects of aromatase inhibitor endocrine therapy in breast cancer – a review. In Vivo. 2022;36(1):40–48. https://doi.org/10.21873/invivo.12674.

83. Almafreji I., Smith C., Peck F. Review of the literature on ocular complications associated with aromatase inhibitor use. Cureus. 2021;13(8):e17565. https://doi.org/10.7759/cureus.17565.

84. Liu J.F., Konstantinopoulos P.A., Matulonis U.A. PARP inhibitors in ovarian cancer: current status and future promise. Gynecol Oncol. 2014;133(2):362–9. https://doi.org/10.1016/j.ygyno.2014.02.039.

85. Pratt G., Yap C., Oldreive C. et al. A multi-centre phase I trial of the PARP inhibitor olaparib in patients with relapsed chronic lymphocytic leukaemia, T-prolymphocytic leukaemia or mantle cell lymphoma. Br J Haematol. 2018;182(3):429–33. https://doi.org/10.1111/bjh.14793.

86. Sakellakis M., Spathas N., Tsaousis K.T. et al. Potential ophthalmological side effects induced by anti-neoplastic regimens for the treatment of genitourinary cancers: a review. Cureus. 2022;14(7):e27266. https://doi.org/10.7759/cureus.27266.


Review

For citations:


Chuikova Y.A., Odintsova O.A., Skalozub D.V., Antonyuk A.G., Kabartai A.A., Nurmamatova A.N., Azimov R.M., Snatenkova P.A., Silantyev A.A., Osina S.R., Minasyan D.S., Lashevich S.A., Isaeva I.A., Rukhlyadyeva E.A. Visual impairments associated with the treatment of malignant tumors of the female reproductive system: a literature review and practical recommendations for oncogynecologists. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.661

Views: 145


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)