Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Ovarian toxicity of endocrine-disrupting chemicals: current state of the problem

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.658

Abstract

Endocrine-disrupting chemicals (EDC) represent a broad class of exogenous substances capable of interfering with the normal functioning of the hormonal system and exerting profound effects on female reproductive health. One of the most vulnerable targets for EDC action are ovaries, where they initiate a cascade of pathophysiological processes. This review systematizes current data on the key mechanisms of EDC-induced ovarian toxicity, including hormonal dysregulation, oxidative stress, apoptosis, epigenetic modifications, and disruption of intercellular signaling. It has been demonstrated that chronic exposure to the agents such as bisphenol A, phthalates, polycyclic aromatic hydrocarbons, and dioxins leads to impaired folliculogenesis, ovarian reserve depletion, and premature ovarian insufficiency. Furthermore, we also discuss epigenetic inheritance mechanisms through which EDC may exert long-term effects on reproductive function across generations. Special attention is paid to therapeutic strategies aimed at mitigating EDC-induced damage, including the use of antioxidants, signaling pathway modulators, and epigenetic regulators. Case studies are presented, which illustrate the global scale of environmental EDC contamination and their bioaccumulation in biological systems. The collective evidence underscors an urgent need for a multidisciplinary approach to risk assessment as well as development of preventive and therapeutic interventions to alleviate EDC impact on women’s reproductive health and to safeguard the reproductive potential of future generations.

About the Authors

L. N. Kolomytseva
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Lyudmila N. Kolomytseva

4 Mitrofana Sedina Str., Krasnodar 350063



E. D. Nebora
Burdenko Voronezh State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elizaveta D. Nebora

10 Studentskaya Str., Voronezh 394036



A. D. Dzhamalutinov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ali D. Dzhamalutinov

3 Lenin Str., Ufa 450008



D. I. Sufiyarov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Damir I. Sufiyarov

eLibrary SPIN-code: 3311-2947

3 Lenin Str., Ufa 450008



D. R. Muginova
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Dina R. Muginova

3 Lenin Str., Ufa 450008



I. I. Mullagulova
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ilina I. Mullagulova

3 Lenin Str., Ufa 450008



A. S. Tushigov
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ayub S. Tushigov

310 Mira Str., Stavropol 355017



Z. D. Bazarova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Zaira D. Bazarova

310 Mira Str., Stavropol 355017



T. A. Nosinkova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Tatyana A. Nosinkova

310 Mira Str., Stavropol 355017



L. A. Khuseynova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Luiza A. Khuseynova

310 Mira Str., Stavropol 355017



K. A. Derevyanko
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Kristina A. Derevyanko

310 Mira Str., Stavropol 355017



M. P. Abaeva
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Maksalina P. Abaeva

310 Mira Str., Stavropol 355017



Zh. Zh. Magomedova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Zhamilya Zh. Magomedova

310 Mira Str., Stavropol 355017



S. M. Borlakova
Stavropol State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Saida M. Borlakova

310 Mira Str., Stavropol 355017



References

1. Timofeyeva E.V., Vysotskiy Y.A., Borodina G.N., Lopatina S.V. Regularities of structural-cellular structure of ovaries in ontogenesis. [Zakonomernosti strukturno-kletochnogo stroeniya yaichnikov v ontogeneze]. Acta Biomedica Scientifica. 2016;1(1):56–8. (In Russ.) https://doi.org/10.12737/21486.

2. Syrkasheva A.G., Dolgushina N.V., Yarotskaya E.L. The influence of anthropogenic chemicals on reproduction. [Vliyanie antropogennyh himicheskih veshchestv na reprodukciyu]. Akusherstvo i ginekologiya. 2018;(3):16–21. (In Russ.). https://doi.org/10.18565/aig.2018.3.16-21.

3. Zhirnov I.A., Nazmieva K.A., Khabibullina A.I. et al. The influence of environmental factors on woman's reproductive health. [Vliyanie faktorov okruzhayushchej sredy na reproduktivnoe zdorov'e zhenshchiny]. Obstetrics, Gynecology and Reproduction. 2024;18(6):858–73. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.564.

4. Adamyan L.V., Makiian Z.N., Glybina T.M. et al. Diagnosis and management of PCOS predictors in adolescent patients. [Prediktory sindroma polikistoznyh yaichnikov u yunyh pacientok (obzor literatury)]. Problemy reprodukcii. 2014;(5):52–6. (In Russ.).

5. Zotov S.V., Likhacheva V.V., Motyreva P.Yu. et al. Risk factors for diminished ovarian reserve in women: current state of the problem. [Faktory riska snizheniya ovarial'nogo rezerva zhenshchin: aktual'noe sostoyanie problem]. Acta Biomedica Scientifica. 2024;9(3):69–78. (In Russ.). https://doi.org/10.29413/ABS.2024-9.3.6.

6. Andreeva E.N., Sheremetyeva E.V., Adamyan L.V. Etiological and pathogenetic factors of ovarian dysfunction in women of reproductive age. [Etiologicheskie i patogeneticheskie faktory disfunkcii yaichnikov u zhenshchin reproduktivnogo perioda]. Problemy reprodukcii. 2020;26(6):34–43. (In Russ.). https://doi.org/10.17116/repro20202606134.

7. Tkachenko L.V., Gritsenko I.A., Tikhaeva K.Yu. et al. Assessment of risk factors and prediction of premature ovarian failure. [Ocenka faktorov riska i prognozirovanie prezhdevremennoj nedostatochnosti yaichnikov]. Obstetrics, Gynecology and Reproduction. 2022;16(1):73–80. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.273.

8. Grigorian O.R., Zhemaite N.S., Volevodz N.N. et al. Long-term consequences of polycystic ovary syndrome. [Otdalennye posledstviya sindroma polikistoznyh yaichnikov]. Terapevticheskij arhiv. 2017;89(10):75–9. (In Russ.). https://doi.org/10.17116/terarkh2017891075-79.

9. Evteeva A.A., Sheremeta M.S., Pigarova E.A. Endocrine disruptors in the pathogenesis of socially significant diseases such as diabetes mellitus, malignant neoplasms, cardiovascular diseases, pathology of the reproductive system. [Endokrinnye disraptory v patogeneze takih social'no znachimyh zabolevanij, kak saharnyj diabet, zlokachestvennye novoobrazovaniya, serdechno-sosudistye zabolevaniya, patologiya reproduktivnoj sistemy]. Ozhirenie i metabolizm. 2021;18(3):327–35. (In Russ.). https://doi.org/10.14341/omet12757.

10. Ho S.-M., Cheong A., Adgent M.A. et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104. https://doi.org/10.1016/j.reprotox.2016.07.011.

11. Rattan S., Zhou C., Chiang C. et al. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233(3):R109–R129. https://doi.org/10.1530/JOE-17-0023.

12. Schug T.T., Janesick A., Blumberg B., Heindel J.J. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3–5):204–15. https://doi.org/10.1016/j.jsbmb.2011.08.007.

13. Patel S., Zhou C., Rattan S., Flaws J.A. Effects of endocrine-disrupting chemicals on the ovary. Biol Reprod. 2015;93(1):20. https://doi.org/10.1095/biolreprod.115.130336.

14. Streifer M., Thompson L.M., Mendez S.A., Gore A.C. Neuroendocrine and developmental impacts of early life exposure to EDCs. J Endocr Soc. 2024;9(1):bvae195. https://doi.org/10.1210/jendso/bvae195.

15. Thambirajah A.A., Wade M.G., Verreault J. et al. Disruption by stealth – interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. Environ Res. 2022;203:111906. https://doi.org/10.1016/j.envres.2021.111906.

16. Kordowitzki P., Krajnik K., Skowronska A., Skowronski M.T. Pleiotropic effects of IGF1 on the oocyte. Cells. 2022;11(10):1610. https://doi.org/10.3390/cells11101610.

17. Evangelinakis N., Geladari E.V., Geladari C.V. et al. The influence of environmental factors on premature ovarian insufficiency and ovarian aging. Maturitas. 2024;179:107871. https://doi.org/10.1016/j.maturitas.2023.107871.

18. Autrup H., Barile F.A., Berry S.C. et al. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? J Toxicol Environ Health A. 2020;83(13–14):485–94. https://doi.org/10.1016/j.cbi.2020.109099.

19. Kim K. The role of endocrine disruption chemical-regulated aryl hydrocarbon receptor activity in the pathogenesis of pancreatic diseases and cancer. Int J Mol Sci. 2024;25(7):3818. https://doi.org/10.3390/ijms25073818.

20. Vidal O.S., Deepika D., Schuhmacher M., Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol. 2021;51(7):634–52. https://doi.org/10.1080/10408444.2021.2009438.

21. Guarnotta V., Amodei R., Frasca F. et al. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int J Mol Sci. 2022;23(10):5710. https://doi.org/10.3390/ijms23105710.

22. Pal S., Sahu A., Verma R., Haldar C. BPS-induced ovarian dysfunction: Protective actions of melatonin via modulation of SIRT-1/Nrf2/NFĸB and IR/PI3K/pAkt/GLUT-4 expressions in adult golden hamster. J Pineal Res. 2023;75(1):e12869. https://doi.org/10.1111/jpi.12869.

23. Zhang X., Zhang Y., Feng X. et al.The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: population data and in vitro studies. Ecotoxicol Environ Saf. 2024;269:115727. https://doi.org/10.1016/j.ecoenv.2023.115727.

24. Hugues J.N., Durnerin I.C. Impact of androgens on fertility – physiological, clinical and therapeutic aspects. Reprod Biomed Online. 2005;11(5):570–80. https://doi.org/10.1016/s1472-6483(10)61165-0.

25. Lutz L.B., Jamnongjit M., Yang W.H. et al. Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands. Mol Endocrinol. 2003;17(6):1106–16. https://doi.org/10.1210/me.2003-0032.

26. Engel A., Buhrke T., Imber F. et al. Agonistic and antagonistic effects of phthalates and their urinary metabolites on the steroid hormone receptors ERα, ERβ, and AR. Toxicol Lett. 2017;277:54–63. https://doi.org/10.1016/j.toxlet.2017.05.028.

27. Rehan M., Ahmad E., Sheikh I.A. et al. Androgen and progesterone receptors are targets for bisphenol A (BPA), 4-methyl-2,4-bis-(P-hydroxyphenyl)Pent-1-Ene – a potent metabolite of BPA, and 4-tert-octylphenol: a computational insight. PLoS One. 2015;10(9):e0138438. https://doi.org/10.1371/journal.pone.0138438.

28. Zhang M., Wang W., Zhang D. et al. Prothioconazole exposure disrupts oocyte maturation and fertilization by inducing mitochondrial dysfunction and apoptosis in mice. Free Radic Biol Med. 2024;213:274–84. https://doi.org/10.1016/j.freeradbiomed.2024.01.027.

29. Safe S., Jin U.H., Park H. et al. Aryl hydrocarbon receptor (AHR) ligands as selective AHR modulators (SAhRMs). Int J Mol Sci. 2020;21(18):6654. https://doi.org/10.3390/ijms21186654.

30. Mackowiak B., Hodge J., Stern S., Wang H. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab Dispos. 2018;46(9):1361–71. https://doi.org/10.1124/dmd.118.081042.

31. Barroso A., Mahler J.V., Fonseca-Castro P.H.., Quintana F.J. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol. 2021;18(2):259–68. https://doi.org/10.1038/s41423-020-00585-5.

32. Tarnow P., Tralau T., Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 2019;15(3):219–29. https://doi.org/10.1080/17425255.2019.1569627.

33. Safe S., Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 2003;16(7):807–16. https://doi.org/10.1021/tx034036r.

34. Hall J.M., Korach K.S. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. Adv Pharmacol. 2021;92:191–235. https://doi.org/10.1016/bs.apha.2021.04.001

35. Zhang D., Trudeau V.L. Integration of membrane and nuclear estrogen receptor signaling. Comp Biochem Physiol A Mol Integr Physiol. 2006;144(3):306–15. https://doi.org/10.1016/j.cbpa.2006.01.025.

36. Gusmao D.O., Vieira H.R., Mansano N.S. et al. Pattern of gonadotropin secretion along the estrous cycle of C57BL/6 female mice. Physiol Rep. 2022;10(17):e15460. https://doi.org/10.14814/phy2.15460.

37. Yang R., Lu Y., Yin N., Faiola F. Transcriptomic integration analyses uncover cCommon bisphenol A effects across species and tissues primarily mediated by disruption of JUN/FOS, EGFR, ER, PPARG, and P53 pathways. Environ Sci Technol. 2023;57(48):19156–68. https://doi.org/10.1021/acs.est.3c02016.

38. Stevenson T.J., Hahn T.P, MacDougall-Shackleton S.A., Ball G.F. Gonadotropin-releasing hormone plasticity: a comparative perspective. Front Neuroendocrinol. 2012;33(3):287–300. https://doi.org/10.1016/j.yfrne.2012.09.001.

39. Gheorghiu M.L. Actualities in mutations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) receptors. Acta Endocrinol (Buchar). 2019;5(1):139–42. https://doi.org/10.4183/aeb.2019.139.

40. Menon K.M., Menon B. Structure, function and regulation of gonadotropin receptors - a perspective. Mol Cell Endocrinol. 2012;356(1–2):88–97. https://doi.org/10.1016/j.mce.2012.01.021.

41. Rogers R.E., Fowler K.A., Pask A.J., Mattiske D.M. Prenatal exposure to diethylstilbestrol has multigenerational effects on folliculogenesis. Sci Rep. 2024;14(1):30819. https://doi.org/10.1038/s41598-024-81093-8.

42. Park M.A., Choi K.C. Effects of 4-nonylphenol and bisphenol A on stimulation of cell growth via disruption of the transforming growth factor-β signaling pathway in ovarian cancer models. Chem Res Toxicol. 2014;27(1):119–28. https://doi.org/10.1021/tx400365z.

43. Bhai M.K.P., Binesh A., Shanmugam S.A., Venkatachalam K. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. J Biochem Mol Toxicol. 2024;38(1):e23589. https://doi.org/10.1002/jbt.23589.

44. Hannon P.R., Akin J.W., Curry T.E. Exposure to a phthalate mixture disrupts ovulatory progesterone receptor signaling in human granulosa cells in vitro†. Biol Reprod. 2023;109(4):552–65. https://doi.org/10.1093/biolre/ioad091.

45. D'Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92. https://doi.org/10.1002/cbin.11137.

46. Gogola J., Hoffmann M., Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate IGF1 secretion by adult ovarian granulosa cell tumor spheroids and thereby increase proliferation of non-cancer ovarian granulosa cells. Toxicol In Vitro. 2020;65:104769. https://doi.org/10.1016/j.tiv.2020.104769.

47. Kourmaeva E., Sabry R., Favetta L.A. Bisphenols A and F, but not S, induce apoptosis in bovine granulosa cells via the intrinsic mitochondrial pathway. Front Endocrinol (Lausanne). 2022;13:1028438. https://doi.org/10.3389/fendo.2022.1028438.

48. Wu C., Du X., Liu H. et al. Advances in polychlorinated biphenyls-induced female reproductive toxicity. Sci Total Environ. 2024;918:170543. https://doi.org/10.1016/j.scitotenv.2024.170543.

49. Sun J., Gan L., Lv S. et al. Exposure to Di-(2-Ethylhexyl) phthalate drives ovarian dysfunction by inducing granulosa cell pyroptosis via the SLC39A5/NF-κB/NLRP3 axis. Ecotoxicol Environ Saf. 2023;252:114625. https://doi.org/10.1016/j.ecoenv.2023.114625.

50. Xu X., Pan Y., Zhan L. et al. The Wnt/β-catenin pathway is involved in 2,5-hexanedione-induced ovarian granulosa cell cycle arrest. Ecotoxicol Environ Saf. 2023;268:115720. https://doi.org/10.1016/j.ecoenv.2023.115720.

51. Land K.L., Miller F.G., Fugate A.C., Hannon P.R. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev. 2022;89(12):608–31. https://doi.org/10.1002/mrd.23652.

52. Yu Y.S., Sui H.S., Han Z.B. et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14(4):341–6. https://doi.org/10.1038/sj.cr.7290234.

53. Zhang H., Nagaoka K., Usuda K. et al. Estrogenic compounds impair primordial follicle formation by inhibiting the expression of proapoptotic Hrk in neonatal rat ovary. Biol Reprod. 2016;95(4):78. https://doi.org/10.1095/biolreprod.116.141309.

54. Zhang R., Wang X.X., Xie J.F. et al. Cypermethrin induces Sertoli cell apoptosis through endoplasmic reticulum-mitochondrial coupling involving IP3R1-GRP75-VDAC1. Reprod Toxicol. 2024;124:108552. https://doi.org/10.1016/j.reprotox.2024.108552.

55. Zhu M.R., Wang H.R., Han F.X. et al. Polyethylene microplastics cause apoptosis via the MiR-132/CAPN axis and inflammation in carp ovarian. Aquat Toxicol. 2023;265:106780. https://doi.org/10.1016/j.aquatox.2023.106780.

56. Chen Y., Hong T., Wang S. et al. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017;46(10):2844–72. https://doi.org/10.1039/c6cs00599c.

57. Dura M., Teissandier A., Armand M. et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet. 2022;54(4):469–80. https://doi.org/10.1038/s41588-022-01040-z.

58. Paksa A., Rajagopal J. The epigenetic basis of cellular plasticity. Curr Opin Cell Biol. 2017;49:116–22. https://doi.org/10.1016/j.ceb.2018.01.003.

59. Ashapkin V., Suvorov A., Pilsner J.R. et al. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update. 2023;29(1):24–44. https://doi.org/10.1093/humupd/dmac033.

60. Zhu Z., Cao F., Li X. Epigenetic programming and fetal metabolic programming. Front Endocrinol (Lausanne). 2019;10:764. https://doi.org/10.3389/fendo.2019.00764

61. Tao Y.R., Zhang Y.T., Han X.Y. et al. Intrauterine exposure to 2,3',4,4',5-pentachlorobiphenyl alters spermatogenesis and testicular DNA methylation levels in F1 male mice. Ecotoxicol Environ Saf. 2021;224:112652. https://doi.org/10.1016/j.ecoenv.2021.112652.

62. Chen S., Zhang Z., Peng H. et al. Histone H3K36me3 mediates the genomic instability of Benzo[a]pyrene in human bronchial epithelial cells. Environ Pollut. 2024;346:123564. https://doi.org/10.1016/j.envpol.2024.123564.

63. Wang H., Liu B., Chen H. et al. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ. 2023;45(1):21. https://doi.org/10.1186/s41021-023-00278-1.

64. Yauk C.L., Polyzos A., Rowan-Carroll A. et al. Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. Environ Mol Mutagen. 2008;49(1):26–35. https://doi.org/10.1002/em.20359.

65. Wan T., Au D.W., Mo J. et al. Assessment of parental benzo[a]pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. Environ Epigenet. 2022;8(1):dvac013. https://doi.org/10.1093/eep/dvac013.

66. Thangavelu S.K., Mohan M., Ramachandran I., Jagadeesan A. Lactational polychlorinated biphenyls exposure induces epigenetic alterations in the Leydig cells of progeny rats. Andrologia. 2021;53(9):e14160. https://doi.org/10.1111/and.14160.

67. Zhang L., Chen W.Q., Han X.Y. et al. Benzo(a)pyrene exposure during pregnancy leads to germ cell apoptosis in male mice offspring via affecting histone modifications and oxidative stress levels. Sci Total Environ. 2024;952:175877. https://doi.org/10.1016/j.scitotenv.2024.175877.

68. Broday L., Peng W., Kuo M.H. et al. Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res. 2000;60(2):238–41.

69. Wei Y.D., Tepperman K., Huang M.Y. et al. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem. 2004;279(6):4110–9. https://doi.org/10.1074/jbc.M310800200.

70. Li F., Yang R., Lu L. et al. Comparative steroidogenic effects of hexafluoropropylene oxide trimer acid (HFPO-TA) and perfluorooctanoic acid (PFOA): regulation of histone modifications. Environ Pollut. 2024;350:124030. https://doi.org/10.1016/j.envpol.2024.124030.

71. Yan H., Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65(4):625–39. https://doi.org/10.1042/EBC20200032.

72. Nouri N., Shareghi-Oskoue O., Aghebati-Maleki L. et al. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal. 2022;20(1):198. https://doi.org/10.1186/s12964-022-00992-3.

73. Furlong H.C., Stämpfli M.R., Gannon A.M., Foster W.G. Identification of microRNAs as potential markers of ovarian toxicity. J Appl Toxicol. 2018;38(5):744–52. https://doi.org/10.1002/jat.3583.

74. Sai L., Qu B., Zhang J. et al. Analysis of long non-coding RNA involved in atrazine-induced testicular degeneration of Xenopus laevis. Environ Toxicol. 2019;34(4):505–12. https://doi.org/10.1002/tox.22704.

75. Sun Y., Zong C., Liu J. et al. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol. 2021;421:115536. https://doi.org/10.1016/j.taap.2021.115536.

76. Lv Z., Hu J., Huang M. et al. Molecular mechanisms of cadmium-induced cytotoxicity in human ovarian granulosa cells identified using integrated omics. Ecotoxicol Environ Saf. 2024;272:116026. https://doi.org/10.1016/j.ecoenv.2024.116026.

77. Fu H., Yang J., Xin B. et al. Accentuated Hippo pathway and elevated miR-132 and miR-195a lead to changes of uteri and ovaries in offspring mice following prenatal exposure to vinclozolin. Reprod Toxicol. 2023;116:108335. https://doi.org/10.1016/j.reprotox.2023.108335.

78. Mori M.P., Penjweini R., Knutson J.R. et al. Mitochondria and oxygen homeostasis. FEBS J. 2022;289(22):6959–68. https://doi.org/10.1111/febs.16115.

79. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. https://doi.org/10.3390/molecules24081583.

80. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3. https://doi.org/10.1016/j.redox.2015.01.002.

81. Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88. https://doi.org/10.1038/cdd.2014.150.

82. Zhong R., He H., Jin M. et al. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. Sci Total Environ. 2022;807(Pt 1):150753. https://doi.org/10.1016/j.scitotenv.2021.150753.

83. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13–33. https://doi.org/10.1038/s41580-023-00645-4.

84. An R., Wang X., Yang L. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. https://doi.org/10.1016/j.tox.2020.152665.

85. Malott K.F., Luderer U. Toxicant effects on mammalian oocyte mitochondria†. Biol Reprod. 2021;104(4):784–93. https://doi.org/10.1093/biolre/ioab002.

86. Zhang Y., Zhao W., Xu H. et al. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome. J Physiol. 2019;597(15):3927–50. https://doi.org/10.1113/JP277879.

87. Wang R., Song B., Wu J. et al. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018;13:8487–506. https://doi.org/10.2147/IJN.S170723.

88. Wang S., Luo C., Guo J. et al. Enhancing therapeutic response and overcoming resistance to checkpoint inhibitors in ovarian cancer through cell cycle regulation. Int J Mol Sci. 2024;25(18):10018. https://doi.org/10.3390/ijms251810018.

89. Wang Z., Zhang W., Huang D. et al. Cuproptosis is involved in decabromodiphenyl ether-induced ovarian dysfunction and the protective effect of melatonin. Environ Pollut. 2024;352:124100. https://doi.org/10.1016/j.envpol.2024.124100.

90. Rajaura S., Bhardwaj N., Singh A. et al. Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol. 2024;130:108724. https://doi.org/10.1016/j.reprotox.2024.108724.

91. Virant-Klun I., Imamovic-Kumalic S., Pinter B. From oxidative stress to male infertility: review of the associations of endocrine-disrupting chemicals (bisphenols, phthalates, and parabens) with human semen quality. Antioxidants (Basel). 2022;11(8):1617. https://doi.org/10.3390/antiox11081617.

92. Bjørklund G., Mkhitaryan M., Sahakyan E. et al. Linking environmental chemicals to neuroinflammation and autism spectrum disorder: mechanisms and implications for prevention. Mol Neurobiol. 2024;61(9):6328–340. https://doi.org/10.1007/s12035-024-03941-y.

93. Zhang Y., Meng F., Zhao T. et al. Melatonin improves mouse oocyte quality from 2-ethylhexyl diphenyl phosphate-induced toxicity by enhancing mitochondrial function. Ecotoxicol Environ Saf. 2024;280:116559. https://doi.org/10.1016/j.ecoenv.2024.116559.

94. Guo L., Zhao Y., Huan Y. Pterostilbene alleviates chlorpyrifos-induced damage during porcine oocyte maturation. Front Cell Dev Biol. 2021;9:803181. https://doi.org/10.3389/fcell.2021.803181.

95. Li Q., Zhu Q., Tian F. et al.In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol. 2022;456:116262. https://doi.org/10.1016/j.taap.2022.116262.

96. Li Y., Xiong B,. Miao Y., Gao Q. Silibinin supplementation ameliorates the toxic effects of butyl benzyl phthalate on porcine oocytes by eliminating oxidative stress and autophagy. Environ Pollut. 2023;329:121734. https://doi.org/10.1016/j.envpol.2023.121734.

97. Sun P., Zhang Y., Sun L. et al. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health. 2023;23(1):15. https://doi.org/10.1186/s12905-022-02154-6.

98. Li X., Yang J., Shi E. et al. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc-/GPX4 pathway and iron metabolism in testicular Leydig cells. Environ Pollut. 2024;344:123332. https://doi.org/10.1016/j.envpol.2024.123332.

99. Wang J.Y., Zhang F.L., Li X.X. et al. Cyanidin-3-O-glucoside mitigates the ovarian defect induced by zearalenone via p53-GADD45a signaling during primordial follicle assembly. J Agric Food Chem. 2023;71(44):16715-16726. https://doi.org/10.1021/acs.jafc.3c03315.

100. Zhang T., He H., Wei Y. et al. Vitamin C supplementation rescued meiotic arrest of spermatocytes in Balb/c mice exposed to BDE-209. Ecotoxicol Environ Saf. 2022;242:113846. https://doi.org/10.1016/j.ecoenv.2022.113846.

101. Martin L., Zhang Y., First O. et al. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. Environ Int. 2022;170:107576. https://doi.org/10.1016/j.envint.2022.107576.

102. Yang T.C., Jovanovic N., Chong F. et al. Interventions to reduce exposure to synthetic phenols and phthalates from dietary intake and personal care products: a scoping review. Curr Environ Health Rep. 2023;10(2):184-214. https://doi.org/10.1007/s40572-023-00394-8.

103. De Falco M., Favetta L.A., Meccariello R. et al. Editorial: endocrine disrupting chemicals in reproductive health, fertility, and early development. Front Endocrinol (Lausanne). 2024;15:1478655. https://doi.org/10.3389/fendo.2024.1478655.

104. Mohajer N., Culty M. IMPACT OF REAL-LIFE ENVIRONMENTAL EXPOSURES ON REPRODUCTION: Impact of human-relevant doses of endocrine-disrupting chemical and drug mixtures on testis development and function. Reproduction. 2025;169(1):e240155. https://doi.org/10.1530/REP-24-0155.

105. Pan J., Liu P., Yu X. et al. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne). 2024;14:1324993. https://doi.org/10.3389/fendo.2023.1324993.


Review

For citations:


Kolomytseva L.N., Nebora E.D., Dzhamalutinov A.D., Sufiyarov D.I., Muginova D.R., Mullagulova I.I., Tushigov A.S., Bazarova Z.D., Nosinkova T.A., Khuseynova L.A., Derevyanko K.A., Abaeva M.P., Magomedova Zh.Zh., Borlakova S.M. Ovarian toxicity of endocrine-disrupting chemicals: current state of the problem. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.658

Views: 184


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)