Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Molecular mechanisms of glucose metabolism disorders in tumors of the female reproductive system

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.650

Abstract

Glucose metabolism plays a pivotal role in fueling the energetic and biosynthetic demands in rapidly proliferating cells. In gynecologic malignancies (GMs), including ovarian cancer (OC), endometrial cancer (EC), and cervical cancer (CC), metabolic reprogramming occurs to support tumor growth, invasion, metastasis, and drug resistance. The current review provides a comprehensive analysis of the molecular mechanisms underlying glucose metabolism dysregulation in tumors of the female reproductive system, covering glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway (PPP). Special attention is paid to key enzymes such as hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), which are central to the Warburg effect. The review also addresses transcriptional regulators such as hypoxia-inducible factor 1-alpha (HIF-1α) and metabolic sensors like pyruvate dehydrogenase kinase 1 (PDK1) and isocitrate dehydrogenase 1 (IDH1) that play important roles in the adaptation of tumor cells to hypoxic conditions and in disease progression. Expression profiles of glucose transporter 1 (GLUT1), glucose transporter 3 (GLUT3), sodium glucose cotransporter 1 (SGLT1) and PPP enzymes – glucose-6-phosphate dehydrogenase (G6PD), transketolase-like 1 (TKTL1), are discussed in the context of redox homeostasis maintenance and the development of chemoresistance. Understanding these metabolic alterations opens avenues for identifying potential therapeutic targets and prognostic biomarkers. Incorporating molecular profiling into clinical practice may facilitate the development of personalized therapeutic strategies and improve the prognosis of patients with gynecologic cancers.

About the Authors

E. Yu. Kovaleva
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Ekaterina Yu. Kovaleva

3 Lenin Str., Ufa 450008



R. R. Kantimirova
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Rozaliya R. Kantimirova

3 Lenin Str., Ufa 450008



T. K. Gunina
Sechenov University
Russian Federation

Tatyana K. Gunina

8 bldg. 2, Trubetskaya Str., Moscow 119048



E. V. Vlasenko
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elizaveta V. Vlasenko

29 Nakhichevansky Lane, 29 Rostov-on-Don 344022



D. O. Salychin
Saint Petersburg State University
Russian Federation

Daniil O. Salychin

7/9 Universitetskaya Emb., Saint Petersburg 199034



D. S. Khulagova
Kuban State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Dana S. Khulagova

4 Mitrofana Sedina Str., Krasnodar 350063



A. Kochkin
Tsiolkovsky Kaluga State University
Russian Federation

Aleksey Kochkin

26 Stepana Razina Str., Kaluga 248023



V. A. Mamatkova
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Victoria A. Mamatkova

29 Nakhichevansky Lane, 29 Rostov-on-Don 344022



N. S. Zhakov
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Nikolai S. Zhakov

29 Nakhichevansky Lane, 29 Rostov-on-Don 344022



G. K. Bezmaternykh
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Gleb K. Bezmaternykh

29 Nakhichevansky Lane, 29 Rostov-on-Don 344022



E. Yu. Fomenko
Children's City Polyclinic No. 1
Russian Federation

Elena Yu. Fomenko

3 Serzhantova Str., Rostov-on-Don 344029



A. A. Mullagalieva
Kazan (Volga Region) Federal University
Russian Federation

Alfiya A. Mullagalieva

18 bldg. 1, Kremlevskaya Str., Kazan 420008



F. S. Ali
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Fatima S. Ali

29 Nakhichevansky Lane, 29 Rostov-on-Don 344022



R. N. Imanova
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Rugaya N. Imanova

1 Ostrovityanovа Str., Moscow, 117513



References

1. Merabishvili V.M., Bakhidze E.V., Urmancheeva A.F. et al. Cancer care in Russia: ovarian cancer, prevalence, registration quality, survival (clinical and population study). [Sostoyanie onkologicheskoj pomoshchi v Rossii: rak yaichnikov, rasprostranennost', kachestvo ucheta, vyzhivaemost' bol'nyh (kliniko-populyacionnoe issledovanie)]. Voprosy onkologii. 2025;71(2):306–17. (In Russ.). https://doi.org/10.37469/0507-3758-2025-71-2-306-317.

2. Gozman E.S. Genetic markers of transformation of borderline ovarian tumors into highly differentiated ovarian cancer. [Geneticheskie markery transformacii pogranichnyh opuholej yaichnikov v vysokodifferencirovannyj rak yaichnikov]. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2021;18(4):24–9. (In Russ.). https://doi.org/10.19163/1994-9480-2021-4(80)-24-29.

3. Matulonis U.A., Sood A.K., Fallowfield L. et al. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. https://doi.org/10.1038/nrdp.2016.61.

4. Zarochentseva N.V., Dzhidzhikhiya L.K., Nabieva V.N., Javakhishvili M.G. The value of human papillomavirus genotyping in the diagnosis of precancerous cervix lesions. [Znachenie genotipirovaniya virusa papillomy cheloveka v diagnostike predrakovyh porazhenij shejki matki]. Rossijskij vestnik akushera-ginekologa. 2021;21(5):30–40. (In Russ.). https://doi.org/10.17116/rosakush20212105130.

5. Yasuda M. New clinicopathological concept of endometrial carcinoma with integration of histological features and molecular profiles. Pathol Int. 2024;74(10):557–73. https://doi.org/10.1111/pin.13471.

6. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059.

7. Locasale J.W., Cantley L.C. Altered metabolism in cancer. BMC Biol. 2010;8:88. https://doi.org/10.1186/1741-7007-8-88.

8. Khlebkova Yu.S., Vysokikh M.Yu., Mezhevitinova E.A. et al. Metabolic reprogramming of cells as a factor for induction and progression of cervical precancer and cancer. [Metabolicheskoe reprogrammirovanie kletok kak faktor indukcii i progressii predraka i raka shejki matki]. Akusherstvo i ginekologiya. 2016;(4):26–35. (In Russ.). https://doi.org/10.18565/aig.2016.4.26-35.

9. Pliszka M., Szablewski L. Glucose transporters as a target for anticancer therapy. Cancers (Basel). 2021;13(16):4184. https://doi.org/10.3390/cancers13164184.

10. Han L., Qu Q., Aydin D. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature. 2022;601(7892):274–9. https://doi.org/10.1038/s41586-021-04211-w.

11. Radkevich E.R., Severina A.S., Shamkhalova M.S., Shestakova M.V. Sodium-glucose cotransporter 2 inhibitors as potential anticancer agents. [Ingibitory natrij-glyukoznogo kotransportera 2 tipa kak potencial'nye protivoonkogennye sredstva]. Saharnyj diabet. 2025;28(2):243–51. (In Russ.). https://doi.org/10.14341/DM13224.

12. Tsunokake S., Iwabuchi E., Miki Y. et al. SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res Treat. 2023;201(3):499–513. https://doi.org/10.1007/s10549-023-07024-9.

13. Cantuaria G., Magalhaes A., Penalver M. et al. Expression of GLUT-1 glucose transporter in borderline and malignant epithelial tumors of the ovary. Gynecol Oncol. 2000;79(1):33–7. https://doi.org/10.1006/gyno.2000.5910.

14. Mendez L.E., Manci N., Cantuaria G. et al. Expression of glucose transporter-1 in cervical cancer and its precursors. Gynecol Oncol. 2002;86(2):138–43. https://doi.org/10.1006/gyno.2002.6745.

15. Khabaz M.N., Qureshi I.A., Al-Maghrabi J.A. GLUT 1 expression is a supportive mean in predicting prognosis and survival estimates of endometrial carcinoma. Ginekol Pol. 2019;90(10):582–8. https://doi.org/10.5603/GP.2019.0102.

16. Rudlowski C., Moser M., Becker A.J. et al. GLUT1 mRNA and protein expression in ovarian borderline tumors and cancer. Oncology. 2004;66(5):404–10. https://doi.org/10.1159/000079489.

17. Baczewska M., Supruniuk E., Bojczuk K. et al. Energy substrate transporters in high-grade ovarian cancer: gene expression and clinical implications. Int J Mol Sci. 2022;23(16):8968. https://doi.org/10.3390/ijms23168968.

18. Tsukioka M., Matsumoto Y., Noriyuki M. et al. Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis. Oncol Rep. 2007;18(2):361–7.

19. Lai B., Xiao Y., Pu H. et al. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet. 2012;285(5):1455–61. https://doi.org/10.1007/s00404-011-2166-5.

20. Sharafutdinova K.I., Shlyapina V.S., Baeva A.I. et al. Diabetes mellitus and the female reproductive system tumors. [Saharnyj diabet i opuholi zhenskoj reproduktivnoj sistemy]. Problemy endokrinologii. 2023;69(3):103–10. (In Russ.). https://doi.org/10.14341/probl13282.

21. Fedorova M.S., Karpova I.Y., Lipatova A.V. et al. Knockdown of hexokinase 2 results in a decreasedexpression level of the glycolytic enzymes PFKP, BPGM, and GPI in RKO cellline. [Ingibirovanie geksokinazy 2 privodit k snizheniyu ekspressii fermentov glikoliza PFKP, BPGM iGPI v kletochnoj linii RKO]. Vavilovskij zhurnal genetiki i selekcii. 2017;21(8):932–6. (In Russ.).https://doi.org/10.18699/VJ17.315.

22. Tan V.P., Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy. 2015;11(6):963–4. https://doi.org/10.1080/15548627.2015.1042195.

23. Campos M., Albrecht L.V. Hitting the sweet spot: how glucose metabolism is orchestrated in space and time by phosphofructokinase-1. Cancers (Basel). 2023;16(1):16. https://doi.org/10.3390/cancers16010016.

24. Wiese E.K., Hitosugi T. Tyrosine kinase signaling in cancer metabolism: PKM2 paradox in the Warburg effect. Front Cell Dev Biol. 2018;6:79. https://doi.org/10.3389/fcell.2018.00079.

25. Sharma D., Singh M., Rani R. Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 2022;87:184–95. https://doi.org/10.1016/j.semcancer.2022.11.007.

26. Yan S., Li Q., Li S. et al. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep. 2022;49(10):9877–91. https://doi.org/10.1007/s11033-022-07513-y.

27. Zheng N., Wei J., Wu D. et al. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2023;1878(6):188971. https://doi.org/10.1016/j.bbcan.2023.188971.

28. Zhou S., Li D., Xiao D. et al. Inhibition of PKM2 enhances sensitivity of olaparib to ovarian cancer cells and induces DNA damage. Int J Biol Sci. 2022;18(4):1555–68. https://doi.org/10.7150/ijbs.62947.

29. Abudula A., Rouzi N., Xu L. et al. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection. Bosn J Basic Med Sci. 2020;20(1):78–87. https://doi.org/10.17305/bjbms.2019.4359.

30. Lin Y., Meng F., Lu Z. et al. Knockdown of PKM2 suppresses tumor progression in human cervical cancer by modulating epithelial-mesenchymal transition via Wnt/β-catenin signaling. Cancer Manag Res. 2018;10:4191–202. https://doi.org/10.2147/CMAR.S178219.

31. Lai Y.J., Chou Y.C., Lin Y.J. et al. Pyruvate kinase M2 expression: a potential metabolic biomarker to differentiate endometrial precancer and cancer that is associated with poor outcomes in endometrial carcinoma. Int J Environ Res Public Health. 2019;16(23):4589. https://doi.org/10.3390/ijerph16234589.

32. Liu X., Zuo X., Sun X. et al. Hexokinase 2 promotes cell proliferation and tumor formation through the Wnt/β-catenin pathway-mediated cyclin D1/c-myc upregulation in epithelial ovarian cancer. J Cancer. 2022;13(8):2559–69. https://doi.org/10.7150/jca.71894.

33. Cui N., Li L., Feng Q. et al. Hexokinase 2 promotes cell growth and tumor formation through the Raf/MEK/ERK signaling pathway in cervical cancer. Front Oncol. 2020;10:581208. https://doi.org/10.3389/fonc.2020.581208.

34. Bolaños-Suárez V., Alfaro A., Espinosa A.M. et al. The mRNA and protein levels of the glycolytic enzymes lactate dehydrogenase A (LDHA) and phosphofructokinase platelet (PFKP) are good predictors of survival time, recurrence, and risk of death in cervical cancer patients. Cancer Med. 2023;12(14):15632–49. https://doi.org/10.1002/cam4.6123.

35. Cao M., Liu Z., You D. et al. TMT-based quantitative proteomic analysis of spheroid cells of endometrial cancer possessing cancer stem cell properties. Stem Cell Res Ther. 2023;14(1):119. https://doi.org/10.1186/s13287-023-03348-x.

36. Koukourakis M.I., Kontomanolis E., Giatromanolaki A. et al. Serum and tissue LDH levels in patients with breast/gynaecological cancer and benign diseases. Gynecol Obstet Invest. 2009;67(3):162–8. https://doi.org/10.1159/000183250.

37. Priego-Hernández V.D., Arizmendi-Izazaga A., Soto-Flores D.G. et al. Expression of HIF-1α and genes involved in glucose metabolism is increased in cervical cancer and HPV-16-positive cell lines. Pathogens. 2022;12(1):33. https://doi.org/10.3390/pathogens12010033.

38. Magar A.G., Morya V.K., Kwak M.K. et al. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: an update. Int J Mol Sci. 2024;25(6):3313. https://doi.org/10.3390/ijms25063313.

39. Daponte A., Ioannou M., Mylonis I. et al. Prognostic significance of Hypoxia-Inducible Factor 1 alpha (HIF-1 alpha) expression in serous ovarian cancer: an immunohistochemical study. BMC Cancer. 2008;8:335. https://doi.org/10.1186/1471-2407-8-335.

40. Wong C., Wellman T.L., Lounsbury K.M. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecol Oncol. 2003;91(3):513–7. https://doi.org/10.1016/j.ygyno.2003.08.022.

41. Zhu C., Ding H., Yang J. et al. Downregulation of proline hydroxylase 2 and upregulation of hypoxia-inducible factor 1α are associated with endometrial cancer aggressiveness. Cancer Manag Res. 2019;11:9907–12. https://doi.org/10.2147/CMAR.S223421.

42. Li N., Li H., Wang Y. et al. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine. EPMA J. 2020;11(4):661–94. https://doi.org/10.1007/s13167-020-00224-z.

43. Yuan Y., Guo-Qing P., Yan T. et al. A study of PKM2, PFK-1, and ANT1 expressions in cervical biopsy tissues in China. Med Oncol. 2012;29(4):2904–10. https://doi.org/10.1007/s12032-011-0154-z.

44. Jiang Y.X., Siu M.K.Y., Wang J.J. et al. Regulates chemoresistance, metastasis and stemness via IAP proteins and the NF-κB signaling pathway in ovarian cancer. Front Oncol. 2022;12:748403. https://doi.org/10.3389/fonc.2022.748403.

45. Da Q., Huang L., Huang C. et al. Glycolytic regulatory enzyme PFKFB3 as a prognostic and tumor microenvironment biomarker in human cancers. Aging (Albany NY). 2023;15(10):4533–59. https://doi.org/10.18632/aging.204758.

46. Shi L., Pan H., Liu Z. et al. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044. https://doi.org/10.1038/sigtrans.2017.44.

47. Xiao Y., Jin L., Deng C. et al. Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene. 2021;40(8):1409–24. https://doi.org/10.1038/s41388-020-01621-4.

48. Yao S., Shang W., Huang L. et al. The oncogenic and prognostic role of PDK1 in the progression and metastasis of ovarian cancer. J Cancer. 2021;12(3):630–43. https://doi.org/10.7150/jca.47278.

49. Liu Y., Qiu S., Zheng X. et al. LINC00662 modulates cervical cancer cell proliferation, invasion, and apoptosis via sponging miR-103a-3p and upregulating PDK4. Mol Carcinog. 2021;60(6):365–76. https://doi.org/10.1002/mc.23294.

50. Sidorkiewicz I., Jóźwik M., Buczyńska A. et al. Identification and subsequent validation of transcriptomic signature associated with metabolic status in endometrial cancer. Sci Rep. 2023;13(1):13763. https://doi.org/10.1038/s41598-023-40994-w.

51. Zong W.X., Rabinowitz J.D., White E. Mitochondria and cancer. Mol Cell. 2016;61(5):667–76. https://doi.org/10.1016/j.molcel.2016.02.011.

52. Pirozzi C.J., Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol. 2021;18(10):645–61. https://doi.org/10.1038/s41571-021-00521-0.

53. Schlichtholz B., Turyn J., Goyke E. et al. Enhanced citrate synthase activity in human pancreatic cancer. Pancreas. 2005;30(2):99–104. https://doi.org/10.1097/01.mpa.0000153326.69816.7d.

54. Chen L., Liu T., Zhou J. et al. Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma. PLoS One. 2014;9(12):e115708. https://doi.org/10.1371/journal.pone.0115708.

55. Cormio A., Guerra F., Cormio G. et al. The PGC-1alpha-dependent pathway of mitochondrial biogenesis is upregulated in type I endometrial cancer. Biochem Biophys Res Commun. 2009;390(4):1182–5. https://doi.org/10.1016/j.bbrc.2009.10.114.

56. Lin C.C., Cheng T.L., Tsai W.H. et al. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep. 2012;2:785. https://doi.org/10.1038/srep00785.

57. Wei Z., Ye S., Feng H. et al. Silybin suppresses ovarian cancer cell proliferation by inhibiting isocitrate dehydrogenase 1 activity. Cancer Sci. 2022;113(9):3032–43. https://doi.org/10.1111/cas.15470.

58. Zhan J., Yang .F, Ge C., Yu X. Multi-omics approaches identify necroptosis-related prognostic signature and associated regulatory axis in cervical cancer. Int J Gen Med. 2022;15:4937–48. https://doi.org/10.2147/IJGM.S366925.

59. Bai M., Yang L., Liao H. et al. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene. 2018;37(42):5666–81. https://doi.org/10.1038/s41388-018-0360-7.

60. Sen T., Sen N., Noordhuis M.G. et al. OGDHL is a modifier of AKT-dependent signaling and NF-κB function. PLoS One. 2012;7(11):e48770. https://doi.org/10.1371/journal.pone.0048770.

61. Qi H., Zhu D. Oncogenic role of copper-induced cell death-associated protein DLD in human cancer: a pan-cancer analysis and experimental verification. Oncol Lett. 2023;25(5):214. https://doi.org/10.3892/ol.2023.13800.

62. Yang H.C., Stern A., Chiu D.T. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J. 2021;44(3):285–92. https://doi.org/10.1016/j.bj.2020.08.001.

63. Bose S., Huang Q., Ma Y. et al. G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment. Cell Rep. 2022;39(13):111012. https://doi.org/10.1016/j.celrep.2022.111012.

64. Feng Q., Li X., Sun W. et al. Targeting G6PD reverses paclitaxel resistance in ovarian cancer by suppressing GSTP1. Biochem Pharmacol. 2020;178:114092. https://doi.org/10.1016/j.bcp.2020.114092.

65. Yi H., Zheng X., Song J. et al. Exosomes mediated pentose phosphate pathway in ovarian cancer metastasis: a proteomics analysis. Int J Clin Exp Pathol. 2015;8(12):15719–28.

66. Cui J., Pan Y., Wang J. et al. MicroRNA-206 suppresses proliferation and predicts poor prognosis of HR-HPV-positive cervical cancer cells by targeting G6PD. Oncol Lett. 2018;16(5):5946–52. https://doi.org/10.3892/ol.2018.9326.

67. Chang Y.F., Yan G.J., Liu G.C. et al. HPV16 E6 promotes the progression of HPV infection-associated cervical cancer by upregulating glucose-6-phosphate dehydrogenase expression. Front Oncol. 2021;11:718781. https://doi.org/10.3389/fonc.2021.718781.

68. Liu B., Fu X., Du Y. et al. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis. 2023;44(6):525–34. https://doi.org/10.1093/carcin/bgad043.

69. Zheng W., Feng Q., Liu J. et al. Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and lung cancer. Front Pharmacol. 2017;8:421. https://doi.org/10.3389/fphar.2017.00421.

70. Guo H., Xiang Z., Zhang Y., Sun D. Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1. Clin Transl Oncol. 2019;21(4):404–11. https://doi.org/10.1007/s12094-018-1937-x.

71. Krockenberger M., Honig A., Rieger L. et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer. 2007;17(1):101–6. https://doi.org/10.1111/j.1525-1438.2007.00799.x.

72. Zhu Y., Qiu Y., Zhang X. TKTL1 participated in malignant progression of cervical cancer cells via regulating AKT signal mediated PFKFB3 and thus regulating glycolysis. Cancer Cell Int. 2021;21(1):678. https://doi.org/10.1186/s12935-021-02383-z.

73. Krockenberger M., Engel J.B., Schmidt M. et al. Expression of transketolase-like 1 protein (TKTL1) in human endometrial cancer. Anticancer Res. 2010;30(5):1653–9.


Review

For citations:


Kovaleva E.Yu., Kantimirova R.R., Gunina T.K., Vlasenko E.V., Salychin D.O., Khulagova D.S., Kochkin A., Mamatkova V.A., Zhakov N.S., Bezmaternykh G.K., Fomenko E.Yu., Mullagalieva A.A., Ali F.S., Imanova R.N. Molecular mechanisms of glucose metabolism disorders in tumors of the female reproductive system. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.650

Views: 242


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)