Preview

Obstetrics, Gynecology and Reproduction

Advanced search

The role of nanotechnologies in diagnostics and treatment of female reproductive system cancer

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.617

Abstract

Introduction. By enhancing detection accuracy, therapeutic effectiveness and minimizing side effects, nanotechnology may contribute to improve diagnostics and treatment of patients with female reproductive system cancer.

Aim: to summarize current literature data and assess а role of nanotechnology in treatment of cervical cancer (CC), ovarian cancer (OC), endometrial cancer (EC) and reveal gaps requiring further research.

Materials and Methods. The search was carried out in the electronic databases PubMed/MEDLINE, Google Scholar and eLibrary using the following keywords: “gynecological cancer”, “targeted therapy”, “cervical cancer”, “ovarian cancer”, “endometrial cancer”, “nanotechnology”, “nanoparticles”. All works were published between 2011 and 2024.

Results. Nanocarrier-based drug delivery systems represent a promising approach to the treatment of female reproductive system oncology, providing precise drug delivery directly to tumor cells. Such systems, including liposomes, nanoparticles, micelles, and dendrimers, are characterized by advanced efficiency, reduced toxicity, as well as the opportunity for controlled release of active components. Nanotechnologies increase the effectiveness of vaccines by prolonging their half-life, affect the СС microenvironment and potentiate the antitumor immune response with minimal toxicity. Nanovaccines are capable of delivering antigens and adjuvants directly to immune cells, enhancing immune response and improving ОС treatment results. Nanotechnologies show prominent potential in improving EC treatment despite that their role in this context remains understudied compared to other types of female reproductive system cancer.

Conclusion. Nanoparticles can carry both conventional drugs as well as protein- and nucleic acid-based systems directly to cancer cells. However, only a few nanoparticle-based treatments for female reproductive system cancer have been approved for use. The field is making significant progress toward more effective and widely available treatments.

About the Authors

Z. R. Faizullina
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Zalina R. Faizullina

3 Lenin Str., Ufa 450008



A. A. Zhilenko
Vernadsky Crimean Federal University
Russian Federation

Andrey A. Zhylenko

295007 Simferopol, Academician Vernadsky Avenue, 4



A. Kh. Islamgulov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Almaz Kh. Islamgulov, MD

WoS ResearcherID: IRZ-0022-2023

3 Lenin Str., Ufa 450008



E. A. Chernaya
North Ossetian State Medical Academy, Ministry of Health of the Russian Federation
Russian Federation

Ekaterina A. Chernaya

40 Pushkinskaya Str., Vladikavkaz, Republic of North Ossetia–Alania 362019



A. I. Tochieva
North Ossetian State Medical Academy, Ministry of Health of the Russian Federation
Russian Federation

Anastasia I. Tochieva

40 Pushkinskaya Str., Vladikavkaz, Republic of North Ossetia–Alania 362019



A. A. Sanova
North Ossetian State Medical Academy, Ministry of Health of the Russian Federation
Russian Federation

Alina A. Sanova

40 Pushkinskaya Str., Vladikavkaz, Republic of North Ossetia–Alania 362019



D. A. Dryaeva
North Ossetian State Medical Academy, Ministry of Health of the Russian Federation
Russian Federation

Diana A. Dryaeva

40 Pushkinskaya Str., Vladikavkaz, Republic of North Ossetia–Alania 362019



S. Sh. Khaknazarov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Salmon Sh. Khaknazarov

3 Lenin Str., Ufa 450008



T. R. Gazizov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Timur R. Gazizov

3 Lenin Str., Ufa 450008



M. M. Otadzhonov
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Muzaffardzhon M. Otadzhonov

3 Lenin Str., Ufa 450008



Kh. A. Merzhoeva
Bashkir State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Khava A. Merzhoeva

3 Lenin Str., Ufa 450008



E. V. Malikova
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Elizaveta V. Malikova, MD

29 Nahichevansky Lane, Rostov-on-Don 344022



V. A. Glazepa
Rostov State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Valeria A. Glazepa

29 Nahichevansky Lane, Rostov-on-Don 344022



A. K. Matviets
Samara State Medical University, Ministry of Health of the Russian Federation
Russian Federation

Aleksandra K. Matviets

89 Chapaevskaya Str., Samara 443099



References

1. Piechocki M., Koziołek W., Sroka D. et al. Trends in incidence and mortality of gynecological and breast cancers in Poland (1980–2018). Clin Epidemiol. 2022;14:95–114. https://doi.org/10.2147/CLEP.S330081.

2. Kotova E.G., Papanova E.K., Adamyan L.V. Timely detection and treatment of malignant neoplasms of the reproductive organs in women as a reserve for increasing life expectancy in the Russian Federation. [Svoevremennoe vyyavlenie i lechenie zlokachestvennyh novoobrazovanij reproduktivnyh organov u zhenshchin kak rezerv rosta ozhidaemoj prodolzhitel'nosti zhizni v Rossijskoj Federacii]. Problemy reprodukcii. 2023;29(6):6–11. (In Russ.). https://doi.org/10.17116/repro2023290616.

3. Keyvani V., Mollazadeh S., Riahi E. et al. Nanotechnological advances in the diagnosis of gynecological cancers and nanotheranostics. Curr Pharm Des. 2024;30(33):2619–30. https://doi.org/10.2174/0113816128317605240628063731.

4. Bogani G., Monk B.J., Powell M.A. et al. Adding immunotherapy to first-line treatment of advanced and metastatic endometrial cancer. Ann Oncol. 2024;35(5):414–28. https://doi.org/10.1016/j.annonc.2024.02.006.

5. St Laurent J., Liu J.F. Treatment approaches for platinum-resistant ovarian cancer. J Clin Oncol. 2024;42(2):127–33. https://doi.org/10.1200/JCO.23.01771.

6. Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

7. Priyadarshini S., Swain P.K., Agarwal K. et al. Trends in gynecological cancer incidence, mortality, and survival among elderly women: а SEER study. Aging Med (Milton). 2024;7(2):179–88. https://doi.org/10.1002/agm2.12297.

8. Rehan F., Zhang M., Fang .J, Greish K. Therapeutic applications of nanomedicine: recent developments and future perspectives. Molecules. 2024;29(9):2073. https://doi.org/10.3390/molecules29092073.

9. Crosbie E.J., Kitson S.J., McAlpine J.N. et al. Endometrial cancer. Lancet. 2022;399(10333):1412–28. https://doi.org/10.1016/S0140-6736(22)00323-3.

10. Leon-Ferre R.A., Goetz M.P. Advances in systemic therapies for triple negative breast cancer. BMJ. 2023;381:e071674. https://doi.org/10.1136/bmj-2022-071674.

11. De Ruysscher D., Niedermann G., Burnet N.G. et al. Radiotherapy toxicity. Nat Rev Dis Primers. 2019;5(1):13. https://doi.org/10.1038/s41572-019-0064-5.

12. Kuderer N.M., Desai A., Lustberg M.B., Lyman G.H. Mitigating acute chemotherapy-associated adverse events in patients with cancer. Nat Rev Clin Oncol. 2022;19(11):681–97. https://doi.org/10.1038/s41571-022-00685-3.

13. Kemp J.A., Kwon Y.J. Cancer nanotechnology: current status and perspectives. Nano Converg. 2021;8(1):34. https://doi.org/10.1186/s40580-021-00282-7.

14. Yang Z., Gao D., Zhao J. et al. Thermal immuno-nanomedicine in cancer. Nat Rev Clin Oncol. 2023;20(2):116–34. https://doi.org/10.1038/s41571-022-00717-y.

15. Su X., Zhang X., Liu W. et al. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol. 2022;86(Pt 2):929–42. https://doi.org/10.1016/j.semcancer.2021.08.003.

16. Handa M., Beg S., Shukla R. et al. Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting. J Control Release. 2021;340:48–59. https://doi.org/10.1016/j.jconrel.2021.10.025.

17. Klochkov S.G., Neganova M.E., Nikolenko V.N. et al. Implications of nanotechnology for the treatment of cancer: recent advances. Semin Cancer Biol. 2021;69:190–9. https://doi.org/10.1016/j.semcancer.2019.08.028.

18. Hulla J.E., Sahu S.C., Hayes A.W. Nanotechnology: history and future. Hum Exp Toxicol. 2015;34(12):1318–21. https://doi.org/10.1177/0960327115603588.

19. Malik S., Muhammad K., Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules. 2023;28(18):6624. https://doi.org/10.3390/molecules28186624.

20. Duraidi A.J., Tsibizova O.V. Nanotechnology in cancer treatment. [Nanotekhnologii v lechenii raka]. Biomedicina. 2021;17(S3):26–7. (In Russ.). https://doi.org/10.33647/2713-0428-17-3E-26-27.

21. Tongi J. Nanotechnology principles and applications for innovative material development. J Basic Clin Pharma. 2023;14(3):260–1.

22. Sun L., Liu H., Ye Y. et al. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023;8(1):418. https://doi.org/10.1038/s41392-023-01642-x.

23. Gavas S., Quazi S., Karpiński T.M. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16(1):173. https://doi.org/10.1186/s11671-021-03628-6.

24. Gareev I.F., Beylerli O.A., Pavlov V.N. et al. Nanoparticles: a new approach to the diagnosis and treatment of cerebral glial tumours. [Nanochasticy: novyj podhod v diagnostike i terapii glial'nyh opuholej golovnogo mozga]. Kreativnaya hirurgiya i onkologiya. 2019;9(1):66–74. (In Russ.). https://doi.org/10.24060/2076-3093-2019-9-1-66-74.

25. Sell M., Lopes A.R., Escudeiro M. et al. Application of nanoparticles in cancer treatment: a concise review. Nanomaterials (Basel). 2023;13(21):2887. https://doi.org/10.3390/nano13212887.

26. Raj S., Khurana S., Choudhari R. et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol. 2021;69:166–77. https://doi.org/10.1016/j.semcancer.2019.11.002.

27. López Grueso M.J., Tarradas Valero R.M., Carmona-Hidalgo B. et al. Peroxiredoxin 6 down-regulation induces metabolic remodeling and cell cycle arrest in HepG2 cells. Antioxidants (Basel). 2019;8(11):505. https://doi.org/10.3390/antiox8110505.

28. Mundekkad D., Cho W.C. Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci. 2022;23(3):1685. https://doi.org/10.3390/ijms23031685.

29. Gabueva Ya. O., Kulakova Yu.A., Buralkina N.A. et al. Cervical cancer: epidemiology, treatment, complications, rehabilitation. [Rak shejki matki: epidemiologiya, lechenie, oslozhneniya, reabilitaciya]. Consilium Medicum. 2024;26(6):372–6. (In Russ.). https://doi.org/10.26442/20751753.2024.6.202836.

30. Zhang S., Xu H., Zhang L., Qiao Y. Cervical cancer: epidemiology, risk factors and screening. Chin J Cancer Res. 2020;32(6):720–8. https://doi.org/10.21147/j.issn.1000-9604.2020.06.05.

31. Song X., Li X., Tan Z., Zhang L. Recent status and trends of nanotechnology in cervical cancer: a systematic review and bibliometric analysis. Front Oncol. 2024;14:1327851. https://doi.org/10.3389/fonc.2024.1327851.

32. Avelino K.Y.P.S., Oliveira L.S., Lucena-Silva N. et al. Metal-polymer hybrid nanomaterial for impedimetric detection of human papillomavirus in cervical specimens. J Pharm Biomed Anal. 2020;185:113249. https://doi.org/10.1016/j.jpba.2020.113249.

33. Avelino K.Y.P.S., Oliveira L.S., Lucena-Silva N. et al. Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta. 2021;226:122118. https://doi.org/10.1016/j.talanta.2021.122118.

34. Pareek S., Jain U., Bharadwaj M. et al. An ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal Biochem. 2023;663:115015. https://doi.org/10.1016/j.ab.2022.115015.

35. Xia J., Liu Y., Ran M. et al. The simultaneous detection of the squamous cell carcinoma antigen and cancer antigen 125 in the cervical cancer serum using nano-Ag polydopamine nanospheres in an SERS-based lateral flow immunoassay. RSC Adv. 2020;10(49):29156–70. https://doi.org/10.1039/d0ra05207h.

36. Lu D., Ran M., Liu Y. et al. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers. Anal Bioanal Chem. 2020;412(26):7099–112. https://doi.org/10.1007/s00216-020-02843-x.

37. Liu Y., Ran M., Sun Y. et al. A sandwich SERS immunoassay platform based on a single-layer Au-Ag nanobox array substrate for simultaneous detection of SCCA and survivin in serum of patients with cervical lesions. RSC Adv. 2021;11(58):36734–47. https://doi.org/10.1039/d1ra03082e.

38. Gu Y., Li Z., Ge S. et al. A microfluidic chip using Au@SiO2 array-based highly SERS-active substrates for ultrasensitive detection of dual cervical cancer-related biomarkers. Anal Bioanal Chem. 2022;414(26):7659–73. https://doi.org/10.1007/s00216-022-04296-w.

39. Cohen P.A., Jhingran A., Oaknin A., Denny L. Cervical cancer. Lancet. 2019;393(10167):169–82. https://doi.org/10.1016/S0140-6736(18)32470-X.

40. Čerina D., Matković V., Katić K. et al. Real-world efficacy and safety of bevacizumab in the first-line treatment of metastatic cervical cancer: a cohort study in the total population of Croatian patients. J Oncol. 2021;2021:2815623. https://doi.org/10.1155/2021/2815623.

41. Kumar N., Mangla M. Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management – a comprehensive review. Cancer Chemother Pharmacol. 2025;95(1):18. https://doi.org/10.1007/s00280-024-04747-4.

42. Pathak K., Akhtar N. Nanocarriers for the effective treatment of cervical cancer: research advancements and patent analysis. Recent Pat Drug Deliv Formul. 2018;12(2):93–109. https://doi.org/10.2174/1872211312666180403102019.

43. Zhou P., Liu W., Cheng Y., Qian D. Nanoparticle-based applications for cervical cancer treatment in drug delivery, gene editing, and therapeutic cancer vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(5):e1718. https://doi.org/10.1002/wnan.1718.

44. Guo W., Sun C., Jiang G., Xin Y. Recent developments of nanoparticles in the treatment of photodynamic therapy for cervical cancer. Anticancer Agents Med Chem. 2019;19(15):1809–19. https://doi.org/10.2174/1871520619666190411121953.

45. Dana P., Bunthot S., Suktham K. et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces. 2020;196:111270. https://doi.org/10.1.016/j.colsurfb.2020.111270.

46. Wang L., Liang TT. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express. 2020;10(1):54. https://doi.org/10.1186/s13568-020-00990-z.

47. Sorokoumova M.V., Kompantsev D.V., Shcherbakova L.I. et al. Poly-D,L-lactide-co-glycolide – a prospective polymer for the development of nanosystems for drug delivery (review). [Poli-D,L-laktid-ko-glikolid – perspektivnyj polimer dlya razrabotki nanosistem dostavki lekarstvennyh sredst (obzor)]. Mediko-farmacevticheskij zhurnal «Pul's». 2022;24(8):42–52. (In Russ.). https://doi.org/10.26787/nydha-2686-6838-2022-24-8-42-52.

48. Fang X., Xie A., Song H. et al. A novel α-(8-quinolinyloxy) monosubstituted zinc phthalocyanine nanosuspension for potential enhanced photodynamic therapy. Drug Dev Ind Pharm. 2020;46(11):1881–8. https://doi.org/10.1080/03639045.2020.1825474.

49. Singh P., Choudhury S., Kulanthaivel S. et al. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma. Colloids Surf B Biointerfaces. 2018;162:202–11. https://doi.org/10.1016/j.colsurfb.2017.11.035.

50. Liao J., Peng H., Wei X. et al. A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2020;108:110461. https://doi.org/10.1016/j.msec.2019.110461.

51. Liao J., Zheng H., Hu R. et al. Hyaluronan based tumor-targeting and pH-responsive shell cross-linkable nanoparticles for the controlled release of doxorubicin. J Biomed Nanotechnol. 2018;14(3):496–509. https://doi.org/10.1166/jbn.2018.2510.

52. Svenningsen S.W., Janaszewska A., Ficker M. et al. Two for the price of one: PAMAM-dendrimers with mixed phosphoryl choline and oligomeric poly(caprolactone) surfaces. Bioconjug Chem. 2016;27(6):1547–57. https://doi.org/10.1021/acs.bioconjchem.6b00213.

53. Kravtsova E.A., Tsyganov M.M., Litviakov N.V., Ibragimova M.K. HPV-associated cervical cancer: current status and prospects. [VPCh-associirovannyj rak shejki matki: sovremennoe sostoyanie i perspektivy]. Acta Biomedica Scientifica. 2023;8(3):42–54. (In Russ.). https://doi.org/10.29413/ABS.2023-8.3.4.

54. Yashchuk A.G., Zainullina R.M., Lyalina G.Z. HPV-associated diseases of the cervix. Review of diagnostic measures and therapeutic correction. [VPCh-associirovanye zabolevaniya shejki matki. obzor diagnosticheskih meropriyatij i lechebnoj korrekcii]. Medicinskij vestnik Bashkortostana. 2020;15(6):127–32. (In Russ.).

55. Gildiz S., Minko T. Nanotechnology-based nucleic acid vaccines for treatment of ovarian cancer. Pharm Res. 2023;40(1):123–44. https://doi.org/10.1007/s11095-022-03434-4.

56. Kumar V., Bauer C., Stewart J.H. TIME is ticking for cervical cancer. Biology (Basel). 2023;12(7):941. https://doi.org/10.3390/biology12070941.

57. Guo J., Liu C., Qi Z. et al. Engineering customized nanovaccines for enhanced cancer immunotherapy. Bioact Mater. 2024;36:330–57. https://doi.org/10.1016/j.bioactmat.2024.02.028.

58. Zhang L., Wang K., Huang Y. et al. Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy. Biomaterials. 2022;282:121411. https://doi.org/10.1016/j.biomaterials.2022.121411.

59. Zhang J., Fan J., Skwarczynski M. et al. Peptide-based nanovaccines in the treatment of cervical cancer: a review of recent advances. Int J Nanomedicine. 2022;17:869–900. https://doi.org/10.2147/IJN.S269986.

60. Bikorimana J.P., Abusarah J., Gonçalves M. et al. An engineered Accum-E7 protein-based vaccine with dual anti-cervical cancer activity. Cancer Sci. 2024;115(4):1102–13. https://doi.org/10.1111/cas.16096.

61. Karimi H., Soleimanjahi H., Abdoli A., Banijamali R.S. Combination therapy using human papillomavirus L1/E6/E7 genes and archaeosome: a nanovaccine confer immuneadjuvanting effects to fight cervical cancer. Sci Rep. 2020;10(1):5787. https://doi.org/10.1038/s41598-020-62448-3.

62. Fang X., Lan H., Jin K. et al. Nanovaccines for cancer prevention and Immunotherapy: an update review. Cancers (Basel). 2022;14(16):3842. https://doi.org/10.3390/cancers14163842.

63. Li X., Pu W., Zheng Q. et al. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol Cancer. 2022;21(1):99. https://doi.org/10.1186/s12943-021-01434-3.

64. Mukerjee N., Maitra S., Gorai S. et al. Revolutionizing Human papillomavirus (HPV)-related cancer therapies: unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nano-vaccines. J Med Virol. 2023;95(10):e29135. https://doi.org/10.1002/jmv.29135.

65. Mulisya O., Sikakulya F.K., Mastaki M. et al. The challenges of managing ovarian cancer in the developing world. Case Rep Oncol Med. 2020;2020:8379628. https://doi.org/10.1155/2020/8379628.

66. Ghose A., McCann L., Makker S. et al. Diagnostic biomarkers in ovarian cancer: advances beyond CA125 and HE4. Ther Adv Med Oncol. 2024;16:17588359241233225. https://doi.org/10.1177/17588359241233225.

67. Zhao J., Tan W., Zheng J. et al. Aptamer nanomaterials for ovarian cancer target theranostics. Front Bioeng Biotechnol. 2022;10:884405. https://doi.org/10.3389/fbioe.2022.884405.

68. Bahari D., Babamiri B., Salimi A. Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters. Anal Bioanal Chem. 2021;413(15):4049–61. https://doi.org/10.1007/s00216-021-03362-z.

69. Tripathi P., Sachan M., Nara S. Novel ssDNA ligand against ovarian cancer biomarker CA125 with promising diagnostic potential. Front Chem. 2020;8:400. https://doi.org/10.3389/fchem.2020.00400.

70. Hanžek A., Ducongé F.., Siatka C., Duc A.E. Identification and characterization of aptamers targeting ovarian cancer biomarker human epididymis protein 4 for the application in urine. Cancers (Basel). 2023;15(2):452. https://doi.org/10.3390/cancers15020452.

71. Hosseinzadeh L., Mazloum-Ardakani M. Advances in aptasensor technology. Adv Clin Chem. 2020;99:237–79. https://doi.org/10.1016/bs.acc.2020.02.010.

72. Zhu G., Zhang H., Jacobson O. et al. Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug Chem. 2017;28(4):1068–75. https://doi.org/10.1021/acs.bioconjchem.6b00746.

73. Corradetti B., Pisano S., Conlan R.S., Ferrari M. Nanotechnology and immunotherapy in ovarian cancer: tracing new landscapes. J Pharmacol Exp Ther. 2019;370(3):636–46. https://doi.org/10.1124/jpet.118.254979.

74. Zheng J., Zhao S., Yu X. et al. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics. 2017;7(5):1373–88. https://doi.org/10.7150/thno.17826.

75. Kanlikilicer P., Ozpolat B., Aslan B. et al. Therapeutic targeting of AXL receptor tyrosine kinase Inhibits tumor growth and intraperitoneal metastasis in ovarian cancer models. Mol Ther Nucleic Acids. 2017;9:251–62. https://doi.org/10.1016/j.omtn.2017.06.023.

76. Guduru R., Liang P., Runowicz C. et al. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci Rep. 2013;3:2953. https://doi.org/10.1038/srep02953.

77. Baghbani F., Moztarzadeh F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces. 2017;153:132–40. https://doi.org/10.1016/j.colsurfb.2017.01.051.

78. Khan I.U., Khan R.U., Asif H. et al. Co-delivery strategies to overcome multidrug resistance in ovarian cancer. Int J Pharm. 2017;533(1):111–24. https://doi.org/10.1016/j.ijpharm.2017.09.060.

79. Wu Y., Yang Y., Lv X. et al. Nanoparticle-based combination therapy for ovarian cancer. Int J Nanomedicine. 2023;18:1965–87. https://doi.org/10.2147/IJN.S394383.

80. Xue J., Li R., Gao D. et al. CXCL12/CXCR4 axis-targeted dual-functional nano-drug delivery system against ovarian cancer. Int J Nanomedicine. 2020;15:5701–18. https://doi.org/10.2147/IJN.S257527.

81. Wang C., Li Q., Song K. et al. Nanoparticle co-delivery of carboplatin and PF543 restores platinum sensitivity in ovarian cancer models through inhibiting platinum-induced pro-survival pathway activation. Nanoscale Adv. 2024;6(16):4082–93. https://doi.org/10.1039/d4na00227j.

82. Pan Q., Tian J., Zhu H. et al. Tumor-targeting polycaprolactone nanoparticles with codelivery of paclitaxel and IR780 for combinational therapy of drug-resistant ovarian cancer. ACS Biomater Sci Eng. 2020;6(4):2175–85. https://doi.org/10.1021/acsbiomaterials.0c00163.

83. Liu R., Gao Y., Liu N., Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther. 2021;33:102156. https://doi.org/10.1016/j.pdpdt.2020.102156.

84. Rudakov D.A., Surov D.A., Soloviev I.A. et al. Fluorescence diagnostics and photodynamic therapy in cytoreductive surgical treatment of peritoneal carcinomatosis patient. [Fluorescentnaya diagnostika i fotodinamicheskaya terapiya v citoreduktivnom hirurgicheskom lechenii bol'noj peritoneal'nym kanceromatozom]. Kreativnaya hirurgiya i onkologiya. 2024;14(2):186–93. (In Russ.). https://doi.org/10.24060/2076-3093-2024-14-2-186-193.

85. Henri J.L., Macdonald J., Strom M. et al. Aptamers as potential therapeutic agents for ovarian cancer. Biochimie. 2018;145:34–44. https://doi.org/10.1016/j.biochi.2017.12.001.

86. Yang Y., Zhao T., Chen Q. et al. Nanomedicine strategies for heating "cold" ovarian cancer (OC): next evolution in immunotherapy of OC. Adv Sci (Weinh). 2022;9(28):e2202797. https://doi.org/10.1002/advs.202202797.

87. Yao M., Liu X., Qian Z. et al. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol. 2023;13:1211262. https://doi.org/10.3389/fonc.2023.1211262.

88. Gurunathan S., Thangaraj P., Wang L. et al. Nanovaccines: an effective therapeutic approach for cancer therapy. Biomed Pharmacother. 2024;170:115992. https://doi.org/10.1016/j.biopha.2023.115992.

89. Cheng S., Xu C., Jin Y. et al. Artificial mini dendritic cells boost T cell-based immunotherapy for ovarian cancer. Adv Sci (Weinh). 2020;7(7):1903301. https://doi.org/10.1002/advs.201903301.

90. Jahanafrooz Z., Oroojalian F., Mokhtarzadeh A. et al. Nanovaccines: immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy. Drug Dev Res. 2024;85(5):e22244. https://doi.org/10.1002/ddr.22244.

91. Chehelgerdi M., Chehelgerdi M., Allela O.Q.B. et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22(1):169. https://doi.org/10.1186/s12943-023-01865-0.

92. Wang Y., Chen S., Wang C., Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother. 2023;166:115348. https://doi.org/10.1016/j.biopha.2023.115348.

93. Gao Y., Qian H., Tang X. et al. Superparamagnetic iron oxide nanoparticle-mediated expression of miR-326 inhibits human endometrial carcinoma stem cell growth. Int J Nanomedicine. 2019;14:2719–31. https://doi.org/10.2147/IJN.S200480.

94. Jing L., Hua X., Yuanna D. et al. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag Res. 2020;12:13541–52. https://doi.org/10.2147/CMAR.S283747.

95. Xu H., Gong Z., Zhou S. et al. Liposomal curcumin targeting endometrial cancer through the NF-κB pathway. Cell Physiol Biochem. 2018;48(2):569–82. https://doi.org/10.1159/000491886.

96. Edwards K., Yao S., Pisano S. et al. Hyaluronic acid-functionalized nanomicelles enhance SAHA efficacy in 3D endometrial cancer models. Cancers (Basel). 2021;13(16):4032. https://doi.org/10.3390/cancers13164032.

97. Liang C., Yang Y., Ling Y. et al. Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem. 2011;19(13):4057–66. https://doi.org/10.1016/j.bmc.2011.05.016.

98. Ebeid K., Meng X., Thiel K.W. et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol. 2018;13(1):72–81. https://doi.org/10.1038/s41565-017-0009-7.

99. Ding J., Zhang X., Chen C. et al. Ultra pH-sensitive polymeric nanovesicles co-deliver doxorubicin and navitoclax for synergetic therapy of endometrial carcinoma. Biomater Sci. 2020;8(8):2264–73. https://doi.org/10.1039/d0bm00112k.

100. Gong X., Pu X., Wang J. et al. Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/Parkin-mediated mitophagy. Int J Nanomedicine. 2021;16:6661–79. https://doi.org/10.2147/IJN.S329341.

101. Yang J., Guo H., Lei J. et al. Fabrication of polymer-based self-assembly nanocarriers loaded with a crizotinib and gemcitabine: potential therapeutics for the treatment of endometrial cancer. J Biomater Sci Polym Ed. 2022;33(1):20–34. https://doi.org/10.1080/09205063.2021.1974149.

102. Cancer Nano-Therapies in the Clinic and Clinical Trials. National Cancer Institute Nanodelivery Systems and Devices, 2023. Available at: https://www.cancer.gov/nano/. [Accessed: 10.01.2025].

103. Crist R., McNeil S. Nanotechnology for Treating Cancer: Pitfalls and Bridges on the Path to Nanomedicines. National Cancer Institute, 2015. Available at: https://www.cancer.gov/research/key-initiatives/ras/news-events/dialogue-blog/2015/nanomedicines


Review

For citations:


Faizullina Z.R., Zhilenko A.A., Islamgulov A.Kh., Chernaya E.A., Tochieva A.I., Sanova A.A., Dryaeva D.A., Khaknazarov S.Sh., Gazizov T.R., Otadzhonov M.M., Merzhoeva Kh.A., Malikova E.V., Glazepa V.A., Matviets A.K. The role of nanotechnologies in diagnostics and treatment of female reproductive system cancer. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.617

Views: 226


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)