Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Use of ophthalmic artery Doppler in preeclampsia prognosis and early diagnostics

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.609

Abstract

Aim: to study ophthalmic artery blood flow parameters for predicting preeclampsia (РЕ) development, as well as compare prognostic value of their changes with calculated PE risk during prenatal screening.

Materials and Methods. A prospective cohort comparative study was conducted by enrolling 80 pregnant women divided into two groups: per 40 subjects at high or low РЕ risk based on first-trimester prenatal screening assigned to main group and control group, respectively. Ophthalmic artery blood flow parameters (assessing the average magnitude from right and left examined vessels) was conducted from 11 to 13+6 weeks of pregnancy using Doppler ultrasound. Peak systolic velocity 1 (PSV1), peak systolic velocity 2 (PSV2), pulsatility index, and resistance index were assessed. Analysis of pregnancy course and outcomes was carried out.

Results. In main group (high РЕ risk), 27 (67.5 %) patients had a normal course of pregnancy and term delivery (38–40 weeks). The remaining patients experienced hypertensive disorders and РЕ. Of the 40 women in main group, 25 (62.5 %) had vaginal deliveries, while 15 (37.5 %) underwent cesarean sections, 13 (86.7 %) subjects of those had indications related to РЕ and fetal growth restriction (FGR). In control group (low РЕ risk), 38 (95.0 %) women also had term delivery, with 31 (77.5 %) subjects having vaginal delivery and 9 (22.5 %) undergoing cesarean sections for indications unrelated to РЕ and FGR. Of the 80 patients from both study groups, РЕ developed in 10 (12.5 %) subjects: 2 cases (5.0 %) in low-risk PE group and 8 (20.0 %) in high-risk PE group. Early-onset РЕ (before 34 weeks of gestational age) was diagnosed in 2 patients (20.0 %) out of 10, whereas late-onset РE (after 34 weeks of gestational age) was diagnosed in 8 (80.0 %) subjects suggesting late PE predominance (ratio 1:4). PSV1 magnitude tended to insignificantly increase in control group. Pulsatility and resistance indices also did not reveal significant differences. In patients at high vs. low PE risk, the PSV2/PSV1 ratio was 8.0 % higher, but these differences were insignificant (p > 0.05), and among those pregnant women who developed PE, the PSV2/PSV1 ratio was significantly higher (p < 0.001) compared to group without PE.

Conclusion. The study results evidence about the importance of evaluating ophthalmic artery blood flow parameters in pregnant women during the first prenatal screening as an additional tool for predicting PE.

About the Authors

M. I. Melek
Sechenov University
Russian Federation

Mila I. Melek, MD.

Scopus Author ID: 57444061700.

8 bldg. 2, Trubetskaya Str., Moscow 119048



I. V. Ignatko
Sechenov University
Russian Federation

Irina V. Ignatko, MD, Dr Sci Med, Prof., Corresponding Member of RAS.

Scopus Author ID: 15118951800.

WoS ResearcherID: ABA-6794-2021.

8 bldg. 2, Trubetskaya Str., Moscow 119048



E. V. Timokhina
Sechenov University
Russian Federation

Elena V. Timokhina, MD, Dr Sci Med, Prof.

Scopus Author ID: 25958373500.

8 bldg. 2, Trubetskaya Str., Moscow 119048



T. E. Kuzmina
Sechenov University
Russian Federation

Tatiana E. Kuzmina, MD, PhD.

Scopus Author ID: 57194424476.

8 bldg. 2, Trubetskaya Str., Moscow 119048



I. A. Fedyunina
Sechenov University
Russian Federation

Irina A. Fedyunina, MD, PhD.

Scopus Author ID: 57191911688.

8 bldg. 2, Trubetskaya Str., Moscow 119048



Yu. A. Samoilova
Sechenov University; Yudin City Clinical Hospital, Moscow Healthcare Department
Russian Federation

Yulia A. Samoilova, MD, PhD. 

8 bldg. 2, Trubetskaya Str., Moscow 119048; 
4 Kolomensky Proezd, Moscow 115446



F. N. Alieva
Sechenov University
Russian Federation

Fatima N. Alieva, MD.

Scopus Author ID: 57225990988.

8 bldg. 2, Trubetskaya Str., Moscow 119048



I. S. Grigoryan
Sechenov University
Russian Federation

Irina S. Grigoryan, MD. 

8 bldg. 2, Trubetskaya Str., Moscow 119048



S. A. Podsekaeva
Sechenov University
Russian Federation

Snezhana A. Podsekaeva

8 bldg. 2, Trubetskaya Str., Moscow 119048



References

1. GBD 2015 Maternal Mortality Collaborators. Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1775–812. https://doi.org/10.1016/S0140-6736(16)31470-2.

2. GBD 2015 Child Mortality Collaborators. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1725–774. https://doi.org/10.1016/S0140-6736(16)31575-6.

3. Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112. https://doi.org/10.1161/CIRCRESAHA.118.313276.

4. Leal C.R.V., Botezelli H., Las Casas J.F.D.C. et al. Urinary biomarkers of preeclampsia: an update. Adv Clin Chem. 2025;124:197–211. https://doi.org/10.1016/bs.acc.2024.11.002.

5. Brown M.A., Magee L.A., Kenny L.C. et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018;13:291–310. https://doi.org/10.1016/j.preghy.2018.05.004.

6. Strizhakov A.N., Timokhina Е.V., Ibragimova S.M. et al. A novel approach to the differential prognosis of early and late preeclampsia. [Novye vozmozhnosti differencial'nogo prognozirovaniya rannej i pozdnej preeklampsii]. Obstetrics, Gynecology and Reproduction. 2018;12(2):55–61. (In Russ.). https://doi.org/10.17749/2313-7347.2018.12.2.055-061.

7. Staff A.C, Fjeldstad H.E., Fosheim I.K. et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895–S906. https://doi.org/10.1016/j.ajog.2020.09.026.

8. Staff A.C. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019;134–135:1–10. https://doi.org/10.1016/j.jri.2019.07.004.

9. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237–e260. https://doi.org/10.1097/AOG.0000000000003891.

10. Timokhina E., Strizhakov A., Ibragimova S. et al. Matrix metalloproteinases MMP-2 and MMP-9 occupy a new role in severe preeclampsia. J Pregnancy. 2020;2020:8369645. https://doi.org/10.1155/2020/8369645.

11. Dai X., Kang L., Ge H. Doppler parameters of ophthalmic artery in women with preeclampsia: a meta-analysis. J Clin Hypertens (Greenwich). 2023;25(1):5–12. https://doi.org/10.1111/jch.14611.

12. Hikima M.S., Adamu M.Y., Lawal Y. et al. Changes in opthalmic artery Doppler velocimetry in women with preeclampsia in Kano, Nigeria. Ann Afr Med. 2023;22(1):5–10. https://doi.org/10.4103/aam.aam_26_21.

13. Kalafat E., Thilaganathan B. Cardiovascular origins of preeclampsia. Curr Opin Obstet Gynecol. 2017;29(6):383–9. https://doi.org/10.1097/GCO.0000000000000419.

14. Khramchenko N.V., Voevodin S.M., Zaretskaya N.V., Andronova N.V. Predictors of severe preeclampsia in the third trimester of pregnancy according to periorbital Doppler ultrasound data. [Prediktory tyazheloj preeklampsii v III trimestre beremennosti po dannym periorbital'noj dopplerometrii]. Akusherstvo i ginekologiya. 2016;(4):44–8. (In Russ.). https://doi.org/10.18565/aig.2016.4.44-48.

15. Hata T., Senoh D., Hata K., Kitao M. Ophthalmic artery velocimetry in pregnant women. Lancet. 1992;340(8812):182–3. https://doi.org/10.1016/0140-6736(92)93268-r.

16. Alves J.A.G., de Sousa P.C P., Holanda Moura S.B.M.E. et al. First-trimester maternal ophthalmic artery Doppler analysis for prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2014;44(4):411–8. https://doi.org/10.1002/uog.13338.

17. Matias D.S., Costa R.F., Matias B.S. et al. Predictive value of ophthalmic artery Doppler velocimetry in relation to development of pre-eclampsia. Ultrasound Obstet Gynecol. 2014;44(4):419–26. https://doi.org/10.1002/uog.13313.

18. Vaz de Melo P.F.M., Roever L., Mendonça T.M.S. et al. Ophthalmic artery Doppler in the complementary diagnosis of preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2023;23(1):343. https://doi.org/10.1186/s12884-023-05656-9.

19. Sarno M., Wright A., Vieira N. et al. Ophthalmic artery Doppler in combination with other biomarkers in prediction of pre-eclampsia at 35-37 weeks' gestation. Ultrasound Obstet Gynecol. 2021;57(4):600–6. https://doi.org/10.1002/uog.23517. Erratum in: Ultrasound Obstet Gynecol. 2022;59(3):407. https://doi.org/10.1002/uog.24878.

20. Kumari N., Ranjan R.K., Rai N. et al. A correlational study of ophthalmic artery Doppler parameters and maternal blood pressure in normotensive and pre-eclamptic pregnancies at a tertiary care hospital. Cureus. 2023;15(6):e40713. https://doi.org/10.7759/cureus.40713.


Review

For citations:


Melek M.I., Ignatko I.V., Timokhina E.V., Kuzmina T.E., Fedyunina I.A., Samoilova Yu.A., Alieva F.N., Grigoryan I.S., Podsekaeva S.A. Use of ophthalmic artery Doppler in preeclampsia prognosis and early diagnostics. Obstetrics, Gynecology and Reproduction. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.609

Views: 142


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)