Preview

Obstetrics, Gynecology and Reproduction

Advanced search

The relationship between clinical-anamnestic data and cell-free fetal DNA level assessed by semiconductor sequencing within non-invasive prenatal testing

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.546

Abstract

Introduction. Currently, non-invasive prenatal testing (NIPT) is widely used to assess a risk of fetal chromosomal anomalies. NIPТ accuracy depends on the cell-free fetal DNA (cffDNA) percentage relative to total cell-free DNA in the pregnant woman's blood (cfDNA fetal fraction, FF). Despite numerous studies, no consensus regarding FF-affecting factors has been reached yet.
Aim: to investigate a relationship between FF and clinical-anamnestic parameters of pregnant women, pregnancy characteristics, and outcomes using the developed NIPТ technology.
Materials and Methods. A prospective observational study was performed by assessing plasma samples from 5459 women with > 9 week-long singleton pregnancies. NIPТ was performed using semiconductor sequencing followed by bioinformatics data processing, including FF determination, according to a previously developed original algorithm.
Results. Median FF was 11.7 [9.5–14.0] %. It was demonstrated that FF depends on blood collection tube type (p < 0.05). FF was found to decrease with woman age and body mass index, and increase with gestational age, elevated early prenatal screening (EPS) biochemical markers – pregnancy-associated plasma protein-A (РАРР-А) and free beta-subunit of human chorionic gonadotropin (β-hCG) levels (p < 0.05). It has been shown that the FF in pregnant women with trisomy 18 is lower than normal (p < 0.05). An increase in FF was observed in pregnant women with fetal congenital anomalies according to ultrasound results (p < 0.05). No association was found between FF and the conception type, first-trimester ultrasound parameters (nuchal translucency, crown-rump length, ultrasound chromosome anomalies markers), fetal trisomy 13 and 21, fetal sex chromosome anomalies, or pregnancy complications – preeclampsia, gestational diabetes, preterm birth, and fetal growth restriction (p > 0.05).
Conclusion. The identified patterns are important to take into consideration while using and interpreting NIPТ.

About the Authors

E. S. Vashukova
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Elena S. Vashukova, MD, PhD in Biology

3 Mendeleevskaya Liniya, Saint Petersburg 199034



O. A. Tarasenko
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Olga A. Tarasenko, MD, PhD in Biology

3 Mendeleevskaya Liniya, Saint Petersburg 199034



A. R. Maltseva
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Anastasiya R. Maltseva, MD.

3 Mendeleevskaya Liniya, Saint Petersburg 199034



A. K. Popova
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Anastasiia K. Popova, MD. 

3 Mendeleevskaya Liniya, Saint Petersburg 199034



O. V. Pachuliia
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Olga V. Pachuliia, MD, PhD.

3 Mendeleevskaya Liniya, Saint Petersburg 199034



O. N. Bespalova
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Olesya N. Bespalova, MD, Dr Sci Med.

3 Mendeleevskaya Liniya, Saint Petersburg 199034



A. S. Glotov
Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Andrey S. Glotov, MD, Dr Sci Biol. 

3 Mendeleevskaya Liniya, Saint Petersburg 199034



References

1. . Sukhikh G.T., Trofimov D.Yu., Barkov I.Yu. et al. Methological recommendations "Conducting Non-invasive prenatal screening (NIPS) for fetal aneuploidies in maternal blood by high-throughput sequencing (NGS)". [Metodicheskie rekomendacii «Provedenie neinvazivnogoprenatal'nogo DNK-skrininga aneuploidij ploda po krovi materi (NIPS) metodom vysokoproizvoditel'nogo sekvenirovaniya»]. Akusherstvo i ginekologiya. 2024;3(Prilozhenie):4–24. (In Russ.). https://doi.org/10.18565/aig.2024.51.

2. Faas B.H., De Ligt J., Janssen I. et al. Non-invasive prenatal diagnosis of fetal aneuploidies using massively parallel sequencing by ligation and evidence that cell-free fetal DNA in the maternal plasma originates from cytotrophoblastic cells. Expert Opin Biol Ther. 2012;12 Suppl 1:S19–26. https://doi.org/10.1517/14712598.2012.670632.

3. Lo Y.M., Zhang J., Leung T.N. et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24. https://doi.org/10.1086/302205.

4. Rather R.A., Saha S.C. Reappraisal of evolving methods in non-invasive prenatal screening: Discovery, biology and clinical utility. Heliyon. 2023;9(3):e13923. https://doi.org/10.1016/j.heliyon.2023.e13923 .

5. Deng C., Liu S. Factors Affecting the fetal fraction in noninvasive prenatal screening: a review. Front Pediatr. 2022;10:812781. https://doi.org/10.3389/fped.2022.812781.

6. Kozyulina P.Yu., Vashukova E.S., Glotov A.S. et al. Method for non-invasive prenatal screening of fetal aneuploidy. [Sposob neinvazivnogo prenatal'nogo skrininga aneuploidij ploda]. RF patent RU 2712175 C1. 24.01.2020. Bull. No. 3. 16 p. (In Russ.). Available at: https://patents.s3.yandex.net/RU2712175C1_20200124.pdf. [Accessed: 20.05.2024].

7. Tarasenko O.A., Vashukova E.S., Kozyulina P.Yu. et al. Experience of using high-throughput sequencing (NGS) for noninvasive prenatal screening of fetal aneuploidiy at the D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction. [Opyt primeneniya vysokoproizvoditel'nogo sekvenirovaniya (NGS) dlya provedeniya neinvazivnogo prenatal'nogo skrininga aneuploidij ploda na baze FGBNU «NII AGiR im. D.O. Otta»]. Akusherstvo i ginekologiya. 2022;(10):37–49. (In Russ.). https://doi.org/10.18565/aig.2022.10.37-49.

8. Kondratskaya V.A., Pokrovskaya M.S., Doludin Yu.V. et al. Influence of preanalytical variables on the quality of cell-free DNA. Biobanking of cell-free DNA material. [Vliyanie preanaliticheskih peremennyh na kachestvo vnekletochnoj DNK. Biobankirovanie materiala dlya vydeleniya vnekletochnoj DNK]. Kardiovaskulyarnaya terapiya i profilaktika. 2021;20(8):3114. (In Russ.). https://doi.org/10.15829/1728-8800-2021-3114.

9. Hidestrand M., Stokowski R., Song K.et al. Influence of temperature during transportation on cell-free DNA analysis. Fetal Diagn Ther. 2012;31(2):122–8. https://doi.org/10.1159/000335020.

10. Medina Diaz I., Nocon A., Mehnert D.H. Performance of streck cfDNA blood collection tubes for liquid biopsy testing. PLoS One. 2016;11(11):e0166354. https://doi.org/10.1371/journal.pone.0166354.

11. Sillence K.A., Roberts L.A., Hollands H.J. et al. Fetal sex and RHD genotyping with digital PCR demonstrates greater sensitivity than realtime PCR. Clin Chem. 2015;61(11):1399–407. https://doi.org/10.1373/clinchem.2015.239137.

12. Revello R., Sarno L., Ispas A. et al. Screening for trisomies by cell-free DNA testing of maternal blood: consequences of a failed result. Ultrasound Obstet Gynecol. 2016;47(6):698–704. https://doi.org/10.1002/uog.15851.

13. Hou Y., Yang J., Qi Y.et al. Factors affecting cell-free DNA fetal fraction: statistical analysis of 13,661 maternal plasmas for non-invasive prenatal screening. Hum Genomics. 2019;13(1):62. https://doi.org/10.1186/s40246-019-0244-0.

14. Kudryavtseva E.V., Kovalev V.V., Dektyarev A.A. Fetal fraction of free-DNA: clinical-diagnostic parallels. [Fetal'naya frakciya free-DNA: klinikodiagnosticheskie paralleli]. Ural'skij medicinskij zhurnal. 2021;20(1):30–5. (In Russ.). https://doi.org/10.52420/2071-5943-2021-20-1-30-35.

15. Deng C., Liu J., Liu S. et al. Maternal and fetal factors influencing fetal fraction: A retrospective analysis of 153,306 pregnant women undergoing noninvasive prenatal screening. Front Pediatr. 2023;11:1066178. https://doi.org/10.3389/fped.2023.1066178.

16. Brar H., Wang E., Struble C. et al. The fetal fraction of cell-free DNA in maternal plasma is not affected by a priori risk of fetal trisomy. J Matern Fetal Neonatal Med. 2013;26(2):143–5. https://doi.org/10.3109/14767058.2012.722731.

17. Hudecova I., Sahota D., Heung M.M. et al. Maternal plasma fetal DNA fractions in pregnancies with low and high risks for fetal chromosomal aneuploidies. PLoS One. 2014;9(2):e88484. https://doi.org/10.1371/journal.pone.0088484.

18. Qiao L., Zhang Q., Liang Y.et al. Sequencing of short cfDNA fragments in NIPT improves fetal fraction with higher maternal BMI and early gestational age. Am J Transl Res. 2019;11(7):4450–9.

19. Guo F.-F., Yang J.-X., Huang Y.-L. et al. Association between fetal fraction at the second trimester and subsequent spontaneous preterm birth. Prenat Diagn. 2019;39(13):1191–7. https://doi.org/10.1002/pd.5566.

20. Talbot A.L., Ambye L., Hartwig T.S. et al. Fetal fraction of cell-free DNA in pregnancies after fresh or frozen embryo transfer following assisted reproductive technologies. Hum Reprod. 2020;35(6):1267–75. https://doi.org/10.1093/humrep/deaa110.

21. Haghiac M., Vora N.L., Basu S. et al. Increased death of adipose cells, a path to release cell-free DNA into systemic circulation of obese women. Obesity (Silver Spring). 2012;20(11):2213–9. https://doi.org/10.1038/oby.2012.138.

22. Lee T.J., Rolnik D.L., Menezes M.A. et al. Cell-free fetal DNA testing in singleton IVF conceptions. Hum Reprod. 2018;33(4):572–8. https://doi.org/10.1093/humrep/dey033.

23. Quezada M.S., Francisco C., Dumitrascu-Biris D. et al. Fetal fraction of cell-free DNA in maternal plasma in the prediction of spontaneous preterm delivery. Ultrasound Obstet Gynecol. 2015;45(1):101–5. https://doi.org/10.1002/uog.14666.

24. Poon L.C., Musci T., Song K. et al. Maternal plasma cell-free fetal and maternal DNA at 11-13 weeks' gestation: relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn Ther. 2013;33(4):215–23. https://doi.org/10.1159/000346806.

25. Lambert-Messerlian G., Kloza E.M., Williams J. et al. Maternal plasma DNA testing for aneuploidy in pregnancies achieved by assisted reproductive technologies. Genet Med. 2014;16(5):419–22. https://doi.org/10.1038/gim.2013.149.

26. Qiao L., Yu B., Liang Y. et al. Sequencing shorter cfDNA fragments improves the fetal DNA fraction in noninvasive prenatal testing. Am J Obstet Gynecol. 2019;221(4):345.e1–345.e11. https://doi.org/10.1016/j.ajog.2019.05.023.

27. Kinnings S.L., Geis J.A., Almasri E. et al. Factors affecting levels of circulating cell-free fetal DNA in maternal plasma and their implications for noninvasive prenatal testing. Prenat Diagn. 2015;35(8):816–22. https://doi.org/10.1002/pd.4625.

28. Song Y., Zhou X., Huang S. et al. Quantitation of fetal DNA fraction in maternal plasma using circulating single molecule amplification and re-sequencing technology (cSMART). Clin Chim Acta. 2016;456:151–6. https://doi.org/10.1016/j.cca.2016.03.005.

29. Scott F.P., Menezes M., Palma-Dias R. et al. Factors affecting cell-free DNA fetal fraction and the consequences for test accuracy. J Matern Fetal Neonatal Med. 2018;31(14):1865–72. https://doi.org/10.1080/14767058.2017.1330881.

30. Miltoft C.B., Rode L., Ekelund C.K. et al. Contingent first-trimester screening for aneuploidies with cell-free DNA in a Danish clinical setting. Ultrasound Obstet Gynecol. 2018;51(4):470–9. https://doi.org/10.1002/uog.17562.

31. Manokhina I., Singh T.K., Robinson W.P. Cell-free placental DNA in maternal plasma in relation to placental health and function. Fetal Diagn Ther. 2017;41(4):258–64. https://doi.org/10.1159/000448707.

32. Metzenbauer M., Hafner E., Hoefinger D. et al. Three-dimensional ultrasound measurement of the placental volume in early pregnancy: method and correlation with biochemical placenta parameters. Placenta. 2001;22(6):602–5. https://doi.org/10.1053/plac.2001.0684.

33. Palomaki G.E., Kloza E.M., Lambert-Messerlian G.M. et al. Circulating cell free DNA testing: are some test failures informative? Prenat Diagn. 2015;35(3):289–93. https://doi.org/10.1097/01.ogx.0000470818.76451.

34. Suzumori N., Ebara T., Yamada T. et al. Fetal cell-free DNA fraction in maternal plasma is affected by fetal trisomy. J Hum Genet. 2016;61(7):647–52. https://doi.org/10.1038/jhg.2016.25.

35. Rava R.P., Srinivasan A., Sehnert A.J. et al. Circulating fetal cell-free DNA fractions differ in autosomal aneuploidies and monosomy X. Clin Chem. 2014;60:243–50. https://doi.org/10.1373/clinchem.2013.207951.

36. Krishna I., Badell M., Loucks T.L. et al. Adverse perinatal outcomes are more frequent in pregnancies with a low fetal fraction result on noninvasive prenatal testing. Prenat Diagn. 2016;36(3):210–5. https://doi.org/10.1002/pd.4779.

37. Kudryavtseva E.V., Kovalev V.V., Kanivets I.V. et al. Cell-free-fetal DNA: an experience of population screening fjr chromosome pathology in Russia. [Free-DNA ploda: opyt populyacionnogo skrininga hromosomnoj patologii v Rossii]. Voprosy ginekologii, akusherstva i perinatologii. 2019;18(3):46–51. (In Russ.). https://doi.org/10.20953/1726-1678-2019-3-46-51.

38. Arizawa M., Nakayama M. Pathological analysis of the placenta in trisomies 21, 18 and 13. Nihon Sanka Fujinka Gakkai Zasshi. 1992;44(1):9–13. [In Japanese].

39. Chen C.P. Placental abnormalities and preeclampsia in trisomy 13 pregnancies. Taiwan J Obstet Gynecol. 2009;48(1):3–8. https://doi.org/10.1016/S1028-4559(09)60028-0.

40. Becking E.C., Wirjosoekarto S.A.M., Scheffer P.G. et al. Low fetal fraction in cell-free DNA testing is associated with adverse pregnancy outcome: Analysis of a subcohort of the TRIDENT-2 study. Prenat Diagn. 2021;41(10):1296–304. https://doi.org/10.1002/pd.6034.

41. Becking E.C., Scheffer P.G., Henrichs J. et al. Fetal fraction of cell-free DNA in noninvasive prenatal testing and adverse pregnancy outcomes: a nationwide retrospective cohort study of 56,110 pregnant women. Am J Obstet Gynecol. 2023;S0002-9378(23)02128-2. https://doi.org/10.1016/j.ajog.2023.12.008.

42. Bardi F., Bet B.B., Pajkrt E. et al. Additional value of advanced ultrasonography in pregnancies with two inconclusive cell-free DNA draws. Prenat Diagn. 2022;42(11):1358–67. https://doi.org/10.1002/pd.6238.

43. Parsadanyan N.G., Shubina E.S., Tetruashvili N.K. et al. Free embryonic DNA levels in a patient with recurrent miscarriage and severe placental insufficiency. [Uroven' svobodnoj embrional'noj DNK u pacientki s privychnym vykidyshem i tyazheloj placentarnoj nedostatochnost'yu]. Akusherstvo i ginekologiya. 2015;(4):90–4. (In Russ.).

44. Reus A.D., Stephenson M.D., van Dunné F.M. et al. Chorionic villous vascularization related to phenotype and genotype in first trimester miscarriages in a recurrent pregnancy loss cohort. Hum Reprod. 2013;28(4):916–23. https://doi.org/10.1093/humrep/det025.

45. Gracheva M.I., Kan N.E., Krasniy A.M. Role of cell-free fetal DNA in early diagnosis of pregnancy complications. [Rol' vnekletochnoj fetal'noj DNK v rannej diagnostike oslozhnenij beremennosti]. Akusherstvo i ginekologiya. 2016;(10):5–10. (In Russ.). https://doi.org/10.18565/aig.2016.10.5-10.


What is already known about this subject?

► Non-invasive prenatal testing (NIPT) for fetal chromosomal abnormalities is one of the most informative and safest methods of prenatal diagnosis. The cell-free fetal DNA (cffDNA) level is the key NIPT quality and accuracy indicator.

► At present, the main trend is to search for anamnestic and clinical factors that may influence the cffDNA level, with the aim to potentiating NIPT diagnostic effectiveness.

► The most effective method for NIPT is the use of various high-throughput sequencing technologies.

What are the new findings?

► Upon using semiconductor sequencing technology the cffDNA level has been shown to depend on the type of blood collection tube, pregnant women age and body mass index, gestational age, early prenatal screening biochemical indicators, fetal trisomy 18.

► The cffDNA level has been shown to increase in pregnant women with fetal congenital defects based on ultrasound data.

► The factors such as the conception type, first-trimester ultrasound early prenatal screening parameters, fetal sex chromosome anomalies, fetal trisomy 13 and 21, or pregnancy complications do not affect cffDNA level.

How might it impact on clinical practice in the foreseeable future?

► The results obtained will expand knowledge about the processes of cffDNA release into the blood plasma in pregnant women, assist in interpreting NIPS data and contribute to improving NIPS methods.

Review

For citations:


Vashukova E.S., Tarasenko O.A., Maltseva A.R., Popova A.K., Pachuliia O.V., Bespalova O.N., Glotov A.S. The relationship between clinical-anamnestic data and cell-free fetal DNA level assessed by semiconductor sequencing within non-invasive prenatal testing. Obstetrics, Gynecology and Reproduction. 2024;18(6):820-834. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.546

Views: 508


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)