Preview

Obstetrics, Gynecology and Reproduction

Advanced search

The role of epigenetics in male and female infertility

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.474

Abstract

Introduction. Today, infertility is a global problem that affects about 48.5 million married couples worldwide. It has been suggested that epigenetic aberrations are of great importance for reproductive health, as they account for an interactive relationship between genomic landscape, interplay with gene environment and disease phenotype. A new understanding on etiology of complex non-Mendelian disease traits has aroused a growing interest in reproductive epigenetics.

Aim: to analyze available publications on epigenetic aspects of male and female infertility as well as nutrition-related risk factors.

Materials and Methods. There was conducted a search for publications in the electronic databases PubMed, Google Scholar and Library to be selected in accordance with PRISMA recommendations. All relevant articles published before November 2023 were included in this review. As a result of the search, there were extracted 530 publications from PubMed, 57 publications – from eLibrary and 23 publications – from Google Scholar. Duplicates and non-full-text article versions were excluded.

Results. Environmental factors play an important role in generation and maintenance of epigenetic marks. DNA methylation abnormalities can lower human fertility. Altered protamine level may affect epigenetic paternally transmitted DNA information. Long-term infertility is associated with a modified methylome in euploid blastocysts primarily affecting regulation of genomic imprinting. Both excess and deficiency of trace elements are associated with adverse pregnancy outcomes, similarly applied infertility.

Conclusion. Despite that epigenetic mechanisms, genes, nutrition and dietary supplements discussed here affect infertility, while a relevant recommended dose has not yet been determined, it was noted that such parameters may positively influence fertility. However, more comprehensive and longitudinal human studies are required to examine their relationship to male and female reproductive functions.

About the Authors

D. A. Egorova
Rostov State Medical University, Health Ministry of Russian Federation
Russian Federation

Diana A. Egorova – Assistant

29 Nakhichevansky Lane, Rostov-on-Don, 344022



V. V. Derezina
Rostov State Medical University, Health Ministry of Russian Federation
Russian Federation

Victoria V. Derezina – Assistant

29 Nakhichevansky Lane, Rostov-on-Don, 344022



M. V. Chebanyan
Rostov State Medical University, Health Ministry of Russian Federation
Russian Federation

Mikhail V. Chebanyan – Resident

29 Nakhichevansky Lane, Rostov-on-Don, 344022



M. B. Sultonova
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Milena B. Sultоnova – Resident

3 Lenin Str., Ufa 450008



T. V. Ishmuratov
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Timur V. Ishmuratov – Student

3 Lenin Str., Ufa 450008



M. M. Gasanov
Rostov State Medical University, Health Ministry of Russian Federation
Russian Federation

Malik M. Gasanov – Resident

29 Nakhichevansky Lane, Rostov-on-Don, 344022



A. Z. Chipchikova
North Caucasus State Academy
Russian Federation

Albina Z. Chipchikova – Resident

36 Stavropolskaya Str., Cherkessk 369001



S. A. Paksileva
Sechenov University
Russian Federation

Sofya A. Paksileva – Student

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



S. S. Mitkina
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Sabina S. Mitkina – Student

3 Lenin Str., Ufa 450008



R. R. Khamidullina
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Radmila R. Khamidullina – Student

3 Lenin Str., Ufa 450008



A. Sh. Kutueva
Ogarev National Research Mordovian State University
Russian Federation

Alina Sh. Kutueva – Student

68 Bolshevistskaya Str., Saransk 430005



A. A. Anikeeva
Bashkir State Medical University, Health Ministry of Russian Federation
Russian Federation

Arina A. Anikeeva – Student

3 Lenin Str., Ufa 450008



References

1. Lebedev G.S., Golubev N.A., Shaderkin I.A. et al. Male infertility in the Russian Federation: statistical data for 2000-2018. [Muzhskoe besplodie v Rossijskoj Federacii: statisticheskie dannye za 2000-2018 gody]. Eksperimental'naya i klinicheskaya urologiya. 2019;(4):4–12. (In Russ.). https://doi.org/10.29188/2222-8543-2019-11-4-4-12.

2. Wagner A.O., Turk A., Kunej T. Towards a multi-omics of male infertility. World J Mens Health. 2023;41(2):272–88. https://doi.org/10.5534/wjmh.220186.

3. Bunkar N., Pathak N., Lohiya N.K., Mishra P.K. Epigenetics: a key paradigm in reproductive health. Clin Exp Reprod Med. 2016;43(2):59–81. https://doi.org/10.5653/cerm.2016.43.2.59.

4. Infertility Workup for the Women's Health Specialist: ACOG Committee Opinion, Number 781. Obstet Gynecol. 2019;133(6):377–84. https://doi.org/10.1097/AOG.0000000000003271.

5. Savina A.A., Zemlyanova E.V., Feiginova S.I. Potential births loss due to male and female infertility in Moscow. [Poteri potencial'nyh rozhdenij v g. Moskve za schet zhenskogo i muzhskogo besplodiya]. Zdorov'e megapolisa. 2022;3(3):39–45. (In Russ.). https://doi.org/10.47619/2713-2617.zm.2022.v.3i3;39–45.

6. Nikitin A.I. IVF as a mirror of evolution. [Ekstrakorporal'noe oplodotvorenie kak zerkalo evolyucii]. Problemy reprodukcii. 2022;28(2):81–5. (In Russ.). https://doi.org/10.17116/repro20222802181.

7. Safaryan G.Kh., Dzhemlikhanova L.Kh., Kogan I.Yu. et al. Autoimmune markers in prognosis of Assisted Reproductive Technology efficiency. [Autoimmunnye markery, prognoziruyushchie effektivnost' programm vspomogatel'nyh reproduktivnyh tekhnologij]. Vestnik Sankt-Peterburgskogo universiteta. Medicina. 2022;17(4):238–53. (In Russ.). https://doi.org/10.21638/spbu11.2022.401.

8. Kuznetsov K.O., Ishbaev Ch.R., Hismatov M.A. et al. The ieffect of di-isononyl phthalate on human reproductive function and in the experiment. [Vliyanie diizononilftalata na reproduktivnuyu funkciyu cheloveka i v eksperimente]. Problemy reprodukcii. 2022;28(5):55–64. (In Russ.). https://doi.org/10.17116/repro20222805155.

9. Maksimenko L.V. Epigenetics as an evidence base of the impact of lifestyle on health and disease. [Epigenetika kak dokazatel'naya baza vliyaniya obraza zhizni na zdorov'e i bolezni]. Profilakticheskaya medicina. 2019;22(2):115–20. (In Russ.). https://doi.org/10.17116/profmed201922021115.

10. Gunes S., Esteves S.C. Role of genetics and epigenetics in male infertility. Andrologia. 2021;53(1):e13586. https://doi.org/10.1111/and.13586.

11. Bruni V., Capozzi A., Lello S. The role of genetics, epigenetics and lifestyle in polycystic ovary syndrome development: the state of the art. Reprod Sci. 2022;29(3):668–79. https://doi.org/10.1007/s43032-021-00515-4.

12. McSwiggin H.M., O'Doherty A.M. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction. 2018;156(2):9–21. https://doi.org/10.1530/REP-18-0009.

13. Marzouni E.T., Ilkhani H., Harchegani A.B. et al. Epigenetic modifications, a new approach to male infertility etiology: a review. Int J Fertil Steril. 2022;16(1):1–9. https://doi.org/10.22074/IJFS.2021.138499.1032.

14. Baranizadeh K., Bahmanzadeh M., Tavilani H. et al. Evaluation of methylenetetrahydrofolate reductase and S-adenosyl-methionine level in male infertility: a case-control study. Int J Reprod Biomed. 2022;20(4):299–306. https://doi.org/10.18502/ijrm.v20i4.10902.

15. Rotondo J.C., Bosi S., Bazzan E. et al. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod. 2012;27(12):3632–8. https://doi.org/10.1093/humrep/des319.

16. Song B., Wang C., Chen Y. et al. Sperm DNA integrity status is associated with DNA methylation signatures of imprinted genes and non-imprinted genes. J Assist Reprod Genet. 2021;38(8):2041–8. https://doi.org/10.1007/s10815-021-02157-6.

17. Ordiyants I.M., Zyukina Z.V., Novginov D.S., Asatryan D.R. Modern concepts of endometrial receptivity in endometriosis-associated infertility (analytical review). [Sovremennye predstavleniya o receptivnosti endometriya pri endometrioz-associirovannom besplodii (analiticheskij obzor)]. Fundamental'naya i klinicheskaya medicina. 2023;8(2):110–9. (In Russ.). https://doi.org/10.23946/2500-0764-2023-8-2-110-119.

18. Kuznetsov K.O., Sharipova E.F., Nizaeva A.S. et al. The role of microRNAs in normal condition and in endometrial pathology. [Rol' mikroRNK v norme i pri patologii endometriya]. Rossijskij vestnik akushera-ginekologa. 2023;23(4):27–34. (In Russ.). https://doi.org/10.17116/rosakush20232304127.

19. Radzinsky V.E., Orazov M.R., Mikhaleva L.M. et al. Predictors of IVF failures in endometrial receptivity dysfunction. [Prediktory neudach EKO pri implantacionnoj nesostoyatel'nosti endometriya]. Trudnyj pacient. 2021;19(1):23–6. (In Russ.). https://doi.org/10.24412/20741995-2021-1-23-26.

20. Godbole G., Suman P., Malik A. et al. Decrease in expression of HOXA10 in the decidua after embryo implantation promotes trophoblast invasion. Endocrinology. 2017;158(8):2618–33. https://doi.org/10.1210/en.2017-00032.

21. Pisarska M.D., Chan J.L., Lawrenson K. et al. Genetics and epigenetics of infertility and treatments on outcomes. J Clin Endocrinol Metab. 2019;104(6):1871–86. https://doi.org/10.1210/jc.2018-01869.

22. Pisarska M.D., Chan J.L., Lawrenson K. et al. Genetics and epigenetics of infertility and treatments on outcomes. J Clin Endocrinol Metab. 2019;104(6):1871–86. https://doi.org/10.1210/jc.2018-01869.

23. Efimova O.A., Pendina A.A., Tikhonov A.V. et al. Oxidized form of 5-methylcytosine – 5-hydroxymethylcytosine: a new insight into the biological significance in the mammalian genome. [Gidroksil'naya forma 5-metilcitozina – 5-gidroksimetilcitozin: novyj vzglyad na biologicheskuyu rol' v genome mlekopitayushchih]. Ekologicheskaya genetika. 2014;12(1):3–13. (In Russ.). https://doi.org/10.17816/ecogen1213-13.

24. Giacone F., Cannarella R., Mongioì L.M. et al. Epigenetics of male fertility: effects on assisted reproductive techniques. World J Mens Health. 2019;37(2):148–56. https://doi.org/10.5534/wjmh.180071.

25. Kaplun D.S., Kalyuzhny D.N., Prokhorchuk E.B., Zhenilo S.V. DNA Methylation: genomewide distribution, regulatory mechanism and therapy target. [Metilirovanie DNK: raspredelenie v genome, mekhanizm regulyacii i mishen' dlya terapii]. Acta Naturae. 2023;14(4):4–19. (In Russ.). https://doi.org/10.32607/actanaturae.11822.

26. Azova M.M., Akhmed A.A., Ait Aissa A., Blagonravov M.L. Association of DNMT3B and DNMN3L gene polymorphisms with early pregnancy loss. [Associaciya polimorfizmov genov DNMT3B i DNMN3L s poterej beremennosti na rannem sroke]. Byulleten' eksperimental'noj biologii i mediciny. 2019;167(4):459–62. (In Russ.).

27. Rotondo J.C., Lanzillotti C., Mazziotta C. et al. Epigenetics of male infertility: the role of DNA methylation. Front Cell Dev Biol. 2021;9:689624. https://doi.org/10.3389/fcell.2021.689624.

28. Esteves S.C., Santi D., Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology. 2020;8(1):53–81. https://doi.org/10.1111/andr.12724.

29. Epanchintseva E.A., Selyatitskaya V.G., Bozhedomov V.A. Sperm DNA fragmentation is a necessity for modern clinical practice. [Indeks fragmentacii DNK spermatozoidov – neobhodimost' dlya sovremennoj klinicheskoj praktiki]. Andrologiya i genital'naya hirurgiya. 2020;21(1):14–21. (In Russ.). https://doi.org/10.17650/2070-9781-2020-21-1-14-21.

30. Yuen B.T., Bush K.M., Barrilleaux B.L. et al. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development. 2014;141(18):3483–94. https://doi.org/10.1242/dev.106450.

31. Fournier C., Labrune E., Lornage J. et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6(3):436–45. https://doi.org/10.1111/andr.12478.

32. Ding G.L., Liu Y., Liu M.E. et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948–53. https://doi.org/10.4103/1008-682X.150844.

33. Sadler-Riggleman I., Klukovich R., Nilsson E. et al. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environ Epigenet. 2019;5(3):dvz013. https://doi.org/10.1093/eep/dvz013.

34. Denomme M.M., Haywood M.E., McCallie B.R. et al. The prolonged disease state of infertility is associated with embryonic epigenetic dysregulation. Fertil Steril. 2021;116(2):309–18.

35. Matveeva L.V., Fominova G.V., Gromova E.V. et al. Immunological forecasting of the effectiveness of assisted reproductive technologies. [Immunologicheskoe prognozirovanie effektivnosti vspomogatel'nyh reproduktivnyh tekhnologij]. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Medicina. 2023;27(3):342–53. (In Russ.). https://doi.org/10.22363/2313-0245-2023-27-2-342-353.

36. Temirbulatov R.R., Isakova E.V., Korsak V.S. Effecrs of serum progesterone levels on the outcomes of assisted reproductive technology programs (literature review). [Vliyanie urovnya progesterona v syvorotke krovi na iskhody programm vspomogatel'nyh reproduktivnyh tekhnologij (obzor literatury)]. Problemy reprodukcii. 2022;28(2):102–9. (In Russ.). https://doi.org/10.17116/repro202228021102.

37. Grishin I.I, Chirvon T.G., Oguede O.R. Current trends in surgical treatment for infertility associated with polycystic ovary syndrome. [Sovremennye tendencii hirurgicheskogo lecheniya besplodiya, associirovannogo s sindromom polikistoznyh yaichnikov]. RMZh. Mat' i ditya. 2022;5(3):209–14. (In Russ.). https://doi.org/10.32364/2618-8430-2022-5-3-209-214.

38. Schulte M.M., Tsai J.H., Moley K.H. Obesity and PCOS: the effect of metabolic derangements on endometrial receptivity at the time of implantation. Reprod Sci. 2015;22(1):6–14. https://doi.org/10.1177/1933719114561552.

39. Davydov A.I., Khabarova M.B., Chilova P.A. et al. Endometriosis and oxidative stress. Treatment rationale in endometriosis-associated infertility. [Endometrioz i okislitel'nyj stress. Obosnovanie strategii lecheniya pri endometrioz-associirovannom besplodii]. Voprosy ginekologii, akusherstva i perinatologii. 2023;22(1):69–75. (In Russ.). https://doi.org/10.20953/1726-1678-2023-1-69-75.

40. Joshi N., Chan J.L. Female genomics: infertility and overall health. Semin Reprod Med. 2017;35(3):217–24. https://doi.org/10.1055/s-0037-1603095.

41. Telenti A., Pierce L.C., Biggs W.H. et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A. 2016;113(42):11901–6. https://doi.org/10.1073/pnas.1613365113.

42. Grimstad F.W., Decherney A. A review of the epigenetic contributions to endometriosis. Clin Obstet Gynecol. 2017;60(3):467–76. https://doi.org/10.1097/GRF.0000000000000298.

43. Halikov A.A., Kildyushov E.M., Kuznetsov K.O. et al. Use of microRNA to estimate time science death: review. [Ispol'zovanie mikroRNK s cel'yu opredeleniya davnosti nastupleniya smerti: obzor]. Sudebnaya medicina. 2021;7(3):132–8. (In Russ.). https://doi.org/10.17816/fm412.

44. Hammond S.M. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001.

45. Rimoldi S.F., Sartori C., Rexhaj E. et al. Antioxidants improve vascular function in children conceived by assisted reproductive technologies: A randomized double-blind placebo-controlled trial. Eur J Prev Cardiol. 2015;22(11):1399–407. https://doi.org/10.1177/2047487314535117.

46. Drapkina O.M., Kim O.T., Dadaeva V.A. The Western diet as payback for civilization: pathophysiological mechanisms and issues for discussion. [Dieta zapadnogo obrazca kak rasplata za civilizaciyu: patofiziologicheskie mekhanizmy i diskussionnye voprosy]. Profilakticheskaya medicina. 2021;24(5):94–102. (In Russ.). https://doi.org/10.17116/profmed20212405194.

47. Salas-Huetos A., Bulló M., Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23(4):371–89. https://doi.org/10.1093/humupd/dmx006.

48. Giahi L., Mohammadmoradi S., Javidan A., Sadeghi M.R. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev. 2016;74(2):118–30. https://doi.org/10.1093/nutrit/nuv059.

49. Lambrot R., Xu C., Saint-Phar S. et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun. 2013;4:2889. https://doi.org/10.1038/ncomms3889.

50. Hoek J., Steegers-Theunissen R.P.M., Willemsen S.P., Schoenmakers S. Paternal folate status and sperm quality, pregnancy outcomes, and epigenetics: a systematic review and meta-analysis. Mol Nutr Food Res. 2020;64(9):e1900696. https://doi.org/10.1002/mnfr.201900696.

51. Tsukanov A.Yu., Turchaninov D.V., Satybaldin D.A. et al. Micronutrient deficiency in men with infertility. [Mikronutrientnyj deficit u muzhchin s besplodiem]. Andrologiya i genital'naya hirurgiya. 2020;21(2):58–63. https://doi.org/10.17650/2070-9781-2020-21-2-58-63. (In Russ.).

52. Khalimova F.T., Karomatov I.D., Isoeva B.I. Phytoestrogens in gynecology (literature review). [Fitoestrogeny v ginekologii (obzor literatury)]. Biologiya i integrativnaya medicina. 2023;1(60):82–143. (In Russ.).

53. Sirotkin A.V., Harrath A.H. Phytoestrogens and their effects. Eur J Pharmacol. 2014;741:230–6. https://doi.org/10.1016/j.ejphar.2014.07.057.

54. Yanagihara N., Zhang H., Toyohira Y. et al. New insights into the pharmacological potential of plant flavonoids in the catecholamine system. J Pharmacol Sci.2014;124(2):123–8. https://doi.org/10.1254/jphs.13r17cp.

55. Messina M., Messina V. The role of soy in vegetarian diets. Nutrients. 2010;2(8):855–88. https://doi.org/10.3390/nu2080855.

56. Cooper A.R. To eat soy or to not eat soy: the ongoing look at phytoestrogens and fertility. Fertil Steril. 2019;112(5):825–6. https://doi.org/10.1016/j.fertnstert.2019.07.016.

57. Morin K.H. Nutrition and infertility: the case of soy. MCN Am J Matern Child Nurs. 2010;35(3):172. https://doi.org/10.1097/NMC.0b013e3181d77f0a.

58. Rossi B.V., Abusief M., Missmer S.A. Modifiable risk factors and infertility: what are the connections? Am J Lifestyle Med. 2014;10(4):220–31. https://doi.org/10.1177/1559827614558020.

59. Gaskins A.J., Chavarro J.E. Diet and fertility: a review. Am J Obstet Gynecol. 2018;218(4):379–89. https://doi.org/10.1016/j.ajog.2017.08.010.

60. Smits R.M., Mackenzie-Proctor R., Yazdani A. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2019;3(3):CD007411. https://doi.org/10.1002/14651858.CD007411.pub4.

61. Arjmand K., Daneshi E., Pourmasumi S. et al. Evaluation of the effect of vitamin E on reproductive parameters in morphine-treated male mice. Addict Health. 2023;15(3):177–84. https://doi.org/10.34172/ahj.2023.1415.

62. Kaltsas A. Oxidative stress and male infertility: the protective role of antioxidants. Medicina (Kaunas). 2023;59(10):1769. https://doi.org/10.3390/medicina59101769.

63. Charkamyani F., Khedmat L., Hosseinkhani A. Decreasing the main maternal and fetal complications in women undergoing in vitro fertilization (IVF) trained by nutrition and healthy eating practices during pregnancy. J Matern Fetal Neonatal Med. 2021;34(12):1855–67. https://doi.org/10.1080/14767058.2019.1651267.

64. Yao D.F., Mills J.N. Male infertility: lifestyle factors and holistic, complementary, and alternative therapies. Asian J Androl. 2016;18(3):410–8. https://doi.org/10.4103/1008-682X.175779.

65. US Preventive Services Task Force; Bibbins-Domingo K., Grossman D.C., Curry S.J. et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force Recommendation Statement. JAMA. 2017;317(2):183–9. https://doi.org/10.1001/jama.2016.19438.

66. Chiu Y.H., Chavarro J.E., Souter I. Diet and female fertility: doctor, what should I eat? Fertil Steril. 2018;110(4):560–9. https://doi.org/10.1016/j.fertnstert.2018.05.027.

67. Subapriya S. Nutrition and fertility and human reproductive function. The Indian Journal of Nutrition and Dietetics. 2016;53:248. https://doi.org/10.21048/ijnd.2016.53.2.4305.

68. Razi Y., Eftekhar M., Fesahat F. et al. Concentrations of homocysteine in follicular fluid and embryo quality and oocyte maturity in infertile women: a prospective cohort. J Obstet Gynaecol. 2021;41(4):588–93. https://doi.org/10.1080/01443615.2020.1785409.

69. Aghayeva S., Sonmezer M., Şükür Y.E., Jafarzade A. The role of thyroid hormones, vitamins, and microelements in female infertility. Rev Bras Ginecol Obstet. 2023;45(11):683–8. https://doi.org/10.1055/s-0043-1772478.

70. Taşkıran M. Is there an association between dietary antioxidant levels and sperm parameters in male infertility? Cureus. 2023;15(8):e44339. https://doi.org/10.7759/cureus.44339.

71. Polzikov M., Blinov D., Barakhoeva Z. et al. Association of the serum folate and total calcium and magnesium levels before ovarian stimulation with outcomes of fresh in vitro fertilization cycles in normogonadotropic women. Front Endocrinol (Lausanne). 2022;13:732731. https://doi.org/10.3389/fendo.2022.732731.

72. Polzikov M.A., Blinov D.V., Ushakova T.I. et al. Do high levels of folic acid in women’s blood impact the outcome of IVF? [Vliyaet li vysokij uroven' folievoj kisloty v krovi zhenshchin na effektivnost' programm EKO?] Obstetrics, Gynecology and Reproduction. 2019;13(4):313–25. (In Russ.). https://doi.org/10.17749/2313-7347.2019.13.4.313-325.

73. Cecchino G.N., Seli E., Alves da Motta E.L., García-Velasco J.A. The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reprod Biomed Online. 2018;36(6):686–97. https://doi.org/10.1016/j.rbmo.2018.02.007.

74. Chen W., Jiao X., Zhang J. et al. Vitamin D deficiency and high serum IL-6 concentration as risk factors for tubal factor infertility in Chinese women. Nutrition. 2018;49:24–31. https://doi.org/10.1016/j.nut.2017.11.016.

75. Wang X.M., Ma Z.Y., Song N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur Rev Med Pharmacol Sci. 2018;22(9):2513–8. https://doi.org/10.26355/eurrev_201805_14899.

76. Heyden E.L, Wimalawansa S.J. Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being. J Steroid Biochem Mol Biol. 2018;180:41–50. https://doi.org/10.1016/j.jsbmb.2017.12.011.

77. Omar M.I., Pal R.P., Kelly B.D. et al. Benefits of empiric nutritional and medical therapy for semen parameters and pregnancy and live birth rates in couples with idiopathic infertility: a systematic review and meta-analysis. Eur Urol. 2019;75(4):615–25. https://doi.org/10.1016/j.eururo.2018.12.022.

78. Shapiro A.J., Darmon S.K., Barad D.H. et al. Vitamin D levels are not associated with ovarian reserve in a group of infertile women with a high prevalance of diminished ovarian reserve. Fertil Steril. 2018;110(4):761–6. https://doi.org/10.1016/j.fertnstert.2018.05.005.

79. Skalnaya M.G., Tinkov A.A., Lobanova Y.N. et al. Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J Trace Elem Med Biol. 2019;56:124–30. https://doi.org/10.1016/j.jtemb.2019.08.009.


Review

For citations:


Egorova D.A., Derezina V.V., Chebanyan M.V., Sultonova M.B., Ishmuratov T.V., Gasanov M.M., Chipchikova A.Z., Paksileva S.A., Mitkina S.S., Khamidullina R.R., Kutueva A.Sh., Anikeeva A.A. The role of epigenetics in male and female infertility. Obstetrics, Gynecology and Reproduction. 2024;18(1):68-82. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.474

Views: 2704


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)