Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Maternal blood proteomics during relapse of early preeclampsia

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.460

Abstract

Aim: to study the contribution of maternal blood endothelial proteins to developing relapse of early preeclampsia (ePE).

Materials and Methods. A proteomic analysis of the peripheral blood of 137 pregnant women was performed. Clinically, three groups were identified at the end of pregnancy: control (n = 40), patients with favorable course of the current and previous pregnancy; comparison group (n = 59) – patients with a history of еPE episode, but favorable course of ongoing pregnancy, and main group (n = 38) – patients with еPE relapse. Biologically active substances evidencing about impaired endothelial function were subject to dynamic monitoring (11–13, 19–21 and 27–28 weeks): activity of endothelin-1 (ET-1) and metalloproteinase ADAMTS-13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13), von Willebrand factor (vWF) level and homocysteine (HC) concentration. The ADAMTS-13/vWF ratio was evaluated separately.

Results. For patients with recurrent еPE, a significant increase in ET-1 is characteristic at all stages of gestation: 0.92; 1.07 and 1.36 pmol/ml vs. 0.29; 0.33 and 0.29 pmol/ml in the control group (p < 0.0001 at all points). Regardless of pregnancy outcome, increasing gestational age was paralleled with elevating vWF level, however, upon еPE relapse, this parameter (Me = 343 IU) is significantly higher (p < 0.0001) than in control group (Me = 260 IU). In all groups, there was a significant decrease in ADAMTS-13 activity, whereas in main group ADAMTS-13 activity at first time point was minimal – 63.4 % (p = 0.0007 relative to control group). With regard to ADAMTS-13/vWF axis in relapsed еPE, significant differences were found compared with control group both at 11–13 weeks (0.32 vs. 0.52; p < 0.0001) and at 27–28 weeks (0.15 vs. 0.22; p < 0.0001) pregnancy. The HC concentration declines with gestational age, but at first time point patients from main group had it (Me = 8.0 µmol/L) at significantly higher level than in control group (Me = 5.9 µmol/L; p < 0.00010).

Conclusion. At gestational age of 11–13 weeks, all analyzed biomarkers contribute to developing еPE relapse accounting for an overall impact of 62.3 % of developing ePE risk. During pregnancy at 19–21 weeks, an imbalance in the ADAMTS-13/vWF along with elevated ET-1 level determine the risk of disease relapse in 65.6 % of cases. It was found that at a gestational age of 27–28 weeks, the associated shift in ET-1, vWF and ADAMTS-13 magnitude accounts for 67.9 % of risk for disease relapse.

About the Authors

M. G. Nikolaeva
Altai State Medical University, Health Ministry of Russian Federation; Altay Branch of National Medical Research Center for Hematology, Health Ministry of Russian Federation
Russian Federation

Mariya G. Nikolaeva – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology with а Course of Professional Postgraduate Education, Altai State Medical University; Senior Researcher, Altai Branch of National Medical Research Center for Hematology. Scopus Author ID: 57191960907. Researcher ID: AAI-6271-2020.

40 Lenin Avenue, Barnaul 656038; 1 Lyapidevskogo Str., Barnaul 656045



V. Yu. Terekhina
Altai State Medical University, Health Ministry of Russian Federation
Russian Federation

Vasilisa Yu. Terekhina – MD, Assistant, Department of Obstetrics and Gynecology with а Course of Professional Postgraduate Education. Scopus Author ID: 57253007400. Researcher ID: ABC-8270-2021.

40 Lenin Avenue, Barnaul 656038



A. P. Momot
Altai State Medical University, Health Ministry of Russian Federation; Altay Branch of National Medical Research Center for Hematology, Health Ministry of Russian Federation
Russian Federation

Andrey P. Momot – MD, Dr Sci Med, Professor, Head of the Laboratory of Hemostasis, Altai State Medical University; Director, Altai Branch of National Medical Research Center for Hematology. Scopus Author ID: 6603848680. Researcher ID: M-7923-2015.

40 Lenin Avenue, Barnaul 656038; 1 Lyapidevskogo Str., Barnaul 656045



References

1. Xue Y., Yang N., Gu X. et al. Risk prediction model of early-onset preeclampsia based on risk factors and routine laboratory indicators. Life (Basel). 2023;13(8):1648. https://doi.org/10.3390/life13081648.

2. Jiao Y., Liu Y., Li H. et al. Value of proteinuria in evaluating the severity of HELLP and its maternal and neonatal outcomes. BMC Pregnancy Childbirth. 2023;23(1):591. https://doi.org/10.1186/s12884-023-05862-5.

3. van Eerden L., de Groot C.J.M., Zeeman G.G. et al. Subsequent pregnancy outcome after mid-trimester termination of pregnancy for preeclampsia. Aust N Z J Obstet Gynaecol. 2018;58(2):204–9. https://doi.org/10.1111/ajo.12691.

4. Gottardi E., Lecarpentier E., Villette C. et al. Preeclampsia before 26 weeks of gestation: Obstetrical prognosis for the subsequent pregnancy. J Gynecol Obstet Hum Reprod. 2021;50(3):102000. https://doi.org/10.1016/j.jogoh.2020.102000.

5. Nguyen T.P.H., Patrick C.J., Parry L.J., Familari M. Using proteomics to advance the search for potential biomarkers for preeclampsia: A systematic review and meta-analysis. PLoS One. 2019;14(4):e0214671. https://doi.org/10.1371/journal.pone.0214671.

6. Sandvik M.K., Leirgul E., Nygård O. et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Am J Obstet Gynecol. 2013;209(6):569.e1–569.e10. https://doi.org/10.1016/j.ajog.2013.07.024.

7. Fadeeva N.I., Suvorova A.V., Maluga O.M. Von Willebrand's factor as a marker of endothelium’s damage of pregnant women with gestosis and their newborns. [Faktor Villebranda – kak marker endotelial'noj disfunkcii u beremennyh zhenshchin s gestozom i rodivshihsya u nih novorozhdennyh]. Sibirskij medicinskij zhurnal (Irkutsk). 2001;24(1):28– 32. (In Russ.).

8. Nishikawa S., Miyamoto A., Yamamoto H. et al. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci. 2000;67(12):1447–54. https://doi.org/10.1016/S0024-3205(00)00736-0.

9. Bulavenko O.V., Vaskiv O.V. Plasma concentrations of endothelin-1 and C-natriuretic peptide of pregnant women with gestational hypertension. [Plazmennye koncentracii endotelina-1 i S-natrijureticheskogo peptida u beremennyh s gestacionnojgiperteziej]. Perinatologiya i pediatriya. 2017;(1):46–50. (In Russ.).

10. Simanjuntak M.K., Idris I., Sunarno I. et al. Mean arterial pressure and the endothelin-1 levels in preeclampsia. Gac Sanit. 2021;35(Suppl 2):S242– S244. https://doi.org/10.1016/j.gaceta.2021.07.016.

11. Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237–41. https://doi.org/10.1179/1607845412Y.0000000070.

12. Brown S.A., Eldridge A., Collins P.W., Bowen D.J. Increased clearance of von Willebrand factor antigen post-DDAVP in Type 1 von Willebrand disease: is it a potential pathogenic process? J Thromb Haemost. 2003;1(8):1714-7. https://doi.org/10.1046/j.1538-7836.2003.00359.x.

13. Davidesko S., Pikovsky O., Al-Athamen K. et al. von Willebrand factor antigen: a biomarker for severe pregnancy complications in women with hereditary thrombotic thrombocytopenic purpura? J Thromb Haemost. 2023;21(6):1623-1629. https://doi.org/10.1016/j.jtha.2023.02.022.

14. Korotchaeva Yu.V., Kozlovskaya N.L., Shifman E.M. et al. Atypical hemolytic uremic syndrome and preeclampsia: cause or effect? [Atipichnyj gemolitiko-uremicheskij sindrom i preeklampsiya: prichina ili sledstvie?]. Voprosy ginekologii, akusherstva i perinatologii. 2021;20(4):55–63. (In Russ.). https://doi.org/10.20953/1726-1678-20214-55-63.

15. Gardikioti A., Venou T.M., Gavriilaki E. et al. Molecular advances in preeclampsia and HELLP syndrome. Int J Mol Sci. 2022;23(7):3851. https://doi.org/10.3390/ijms23073851.

16. Clinical guidelines – Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period – 2021-2022-2023 (24.06.2021). [Klinicheskie rekomendacii – Preeklampsiya. Eklampsiya. Oteki, proteinuriya i gipertenzivnye rasstrojstva vo vremya beremennosti, v rodah i poslerodovom periode – 2021-2022-2023 (24.06.2021)]. Moscow: Ministerstvo zdravoohraneniya Rossijskoj Federacii, 2021. 54 p. (In Russ.). Available at: http://disuria.ru/_ld/10/1046_kr21O10O16MZ.pdf. [Accessed: 16.10.2023].

17. Grigoreva K.N., Gashimova N.R., Bitsadze V.O. et al. Clinical significance of ADAMTS-13/vWF axis in pregnant women at different trimesters of gestation. [Klinicheskoe znachenie sostoyaniya osi ADAMTS-13/vWF u beremennyh v razlichnye trimestry gestacii]. Obstetrics, Gynecology and Reproduction. 2023;17(2):221–30. (In Russ.). https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.405.

18. Momot A.P., Taranenko I.A., Belozerov D.E. et al. Initiation of blood coagulation in different stages of normal pregnancy. [Iniciaciya svertyvaniya krovi v raznye sroki fiziologicheski protekayushchej beremennosti]. Byulleten' Sibirskogo otdeleniya Rossijskoj akademii medicinskih nauk. 2014;34(5):58–66. (In Russ.). https://doi.org/10.18411/d-2016-064.

19. Scully M., Neave L. Etiology and outcomes: Thrombotic microangiopathies in pregnancy. Res Pract Thromb Haemost. 2023;7(2):100084. https://doi.org/10.1016/j.rpth.2023.100084.

20. Alpoim P.N., Gomes K.B., Godoi L.C. et al. ADAMTS13, FVIII, von Willebrand factor, ABO blood group assessment in preeclampsia. Clin Chim Acta. 2011;412(23–24):2162–6. https://doi.org/10.1016/j.cca.2011.07.030

21. Yoshida Y., Matsumoto M., Yagi H. et al. Severe reduction of free-form ADAMTS13, unbound to von Willebrand factor, in plasma of patients with HELLP syndrome. Blood Adv. 2017;1(20):1628–31. https://doi.org/10.1182/bloodadvances.2017006767.

22. Kolenko O.V., Pomytkina N.V., Sorokin E.L. et al. Correlation between biochemical markers of endothelial dysfunction, free radical oxidation and morphometric parameters of macular retina in pregnant women with preeclampsia. [O vzaimosvyazi mezhdu biohimicheskimi faktorami endotelial'noj disfunkcii, svobodnoradikal'nogo okisleniya i morfometricheskimi pokazatelyami makulyarnoj zony pri preeklampsii]. Vestnik Oftal'mologii. 2019;135(2):39–47. (In Russ.). https://doi.org/10.17116/oftalma201913502139.

23. Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534–40. https://doi.org/10.1111/j.1365-2141.2007.06688.x.

24. Stepanian A., Cohen-Moatti M., Sanglier T. et al.; ECLAXIR Study Group. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703–9. https://doi.org/10.1161/ATVBAHA.111.223610.

25. Molvarec A., Rigó J., Bõze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305–11.

26. Qu H., Khalil R.A. Role of ADAM and ADAMTS disintegrin and metalloproteinases in normal pregnancy and preeclampsia. Biochem Pharmacol. 2022;206:115266. https://doi.org/10.1016/j.bcp.2022.115266.

27. Franchini M., Montagnana M., Targher G., Lippi G. Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies and other diseases. Semin Thromb Hemost. 2007;33(8):787–97. https://doi.org/10.1055/s-2007-1000365.

28. Zander C.B., Cao W., Zheng X.L. ADAMTS13 and von Willebrand factor interactions. Curr Opin Hematol. 2015;22(5):452–9. https://doi.org/10.1097/MOH.0000000000000169.


Review

For citations:


Nikolaeva M.G., Terekhina V.Yu., Momot A.P. Maternal blood proteomics during relapse of early preeclampsia. Obstetrics, Gynecology and Reproduction. 2023;17(6):718-728. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.460

Views: 734


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)