Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Dysregulated platelet function in COVID-19 patients

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.372

Abstract

More than two year-experience in monitoring patients with severe novel coronavirus disease revealed an increased risk of macroand microcirculatory thrombosis, clinically manifested by heart attack, stroke, thromboses of rare localizations (thrombosis of the hepatic veins, mesenteric veins, cerebral sinuses, portal vein), being the main cause of adverse outcomes. Thromboembolic complications, expressed as sepsis-induced coagulopathy, disseminated intravascular coagulation, venous and arterial thromboembolism, pulmonary embolism, microthrombosis, and thrombotic microangiopathy were noted to affect various organs such as the lungs, heart, kidneys, and brain. Earlier, we showed that hypercoagulability is closely related to inflammatory diseases and hemostasis dysregulation. Endothelial injury and dysfunction have been identified as critical pathways to thrombosis, and other mechanisms occurring in the microvasculature were described such as endothelial activation, cytokine storm, and formation of neutrophil extracellular traps (NETs). However, a role of platelets in severe COVID-19 has not been examined. Platelets are small non-nucleated cells most known as the central mediators of hemostasis. However, upon activation, platelets release a variety of immunomodulatory cytokines and chemokines involved in regulating immune response. Because platelets are involved in both immunity and coagulation, they play a central role in immunothrombosis, a physiological process wherein immune cells induce microthrombogenesis both to prevent spread of pathogens and facilitate their clearance. Moreover, platelets can directly interact with viral receptors including those related to SARS-CoV-2. Platelet dysfunction includes both thrombocytopenia and platelet hyperactivation. It should be noted that persistent thrombocytopenia is usually correlated with mortality being associated with thrombosis of the cerebral sinuses, splanchnic system, autoimmune reactions, as well as with administered heparin and vaccines. Therefore, here we review a role of platelets in the pathogenesis of COVID-19.

About the Authors

N. R. Gashimova
Sechenov University
Russian Federation

Nilufar R. Gashimova – MD, Postgraduate Student, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



V. O. Bitsadze
Sechenov University
Russian Federation

Victoria O. Bitsadze – MD, Dr Sci Med, Professor of RAS, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of
Children’s Health

Scopus Author ID: 6506003478

Researcher ID: F-8409-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



L. L. Pankratyeva
Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Health Ministry of Russian Federation
Russian Federation

Liudmila L. Pankratyeva – MD, Dr Sci Med, Head of the Clinical Research Center; Neonatologist, Hematologist,
Associate Professor, Professor, Department of Pediatrics and Health Organization

Scopus Author ID: 7006391091

Author ID: 697284.

2/44 Salyama Adilya Str., Moscow 123423;

1 Samora Machel Str., Moscow 117997



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 57194547147

Researcher ID: F-8384-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



E. V. Slukhanchuk
Sechenov University
Russian Federation

Ekaterina V. Slukhanchuk – MD, PhD, Associate Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s
Health

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



K. N. Grigoreva
Sechenov University
Russian Federation

Kristina N. Grigoreva – MD, Assistant, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



V. I. Tsibizova
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Valentina I. Tsibizova – MD, PhD, Obstetrician-Gynecologist, Research Laboratory of Operative Gynecology, Institute of Perinatology and Pediatrics; Physician, Department of Functional and Ultrasound Diagnostics

2 Akkuratova Str., Saint Petersburg 197341



J.-C. Gris
Sechenov University; University of Montpellier
Russian Federation

Jean-Christophe Gris – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health; Professor of Haematology, Head of the Laboratory of Haematology, Faculty of Biological and Pharmaceutical Sciences

Scopus Author ID: 7005114260

Researcher ID: AAA-2923-2019.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991;

163 Rue Auguste Broussonnet, Montpellier 34090



I. Elalamy
Sechenov University; Medicine Sorbonne University; Hospital Tenon
Russian Federation

Ismail Elalamy – MD, Dr Sci Med, Professor, Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health; Professor; Director of Hematology

Scopus Author ID: 7003652413

Researcher ID: AAC-9695-2019.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991;

12 Rue de l’École de Médecine, Paris 75006;

4 Rue de la Chine, Paris 75020



C. Ay
University of Vienna
Austria

Cihan Ay – MD, PhD, Professor, Department of Medicine I

Scopus Author ID: 55356863800

1 Universitätsring, Vienna 1010



D. V. Blinov
Sechenov University; Institute for Preventive and Social Medicine; Haass Moscow Medical and Social Institute
Russian Federation

Dmitry V. Blinov – MD, PhD, MBA, Assistant, Department of Sports Medicine and Medical Rehabilitation, Sklifosovsky Institute of Clinical Medicine; Head of Medical and Scientific Affairs; Associate Professor, Department of Sports, Physical and Rehabilitation Medicine

Scopus Author ID: 6701744871

Researcher ID: E-8906-2017

RSCI: 9779-8290.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991;

4–10 Sadovaya-Triumfalnaya Str., Moscow 127006;

5 bldg. 1–1a, 2-ya Brestskaya Str., Moscow 123056



V. N. Serov
Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Health Ministry of Russian Federation
Russian Federation

Vladimir N. Serov – MD, Dr Sci Med, Academician of RAS, Professor

4 Academika Oparina Str., Moscow 117997



A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya – MD, Dr Sci Med, Academician of RAS, Professor, Head of the Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



References

1. Coronavirus Disease (COVID-2019) Weekly Epidemiological Updates and Monthly Operational Update. World Health Organization, 2022. Available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/situatio. [Aссessed: 10.09.2022].

2. Cui S., Chen S., Li X. et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–4. https://doi.org/10.1111/jth.14830.

3. Poissy J., Goutay J., Caplan M et al.; Lille ICU Haemostasis COVID-19 Group. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation. 2020;142(2):184–6. https://doi.org/10.1161/CIRCULATIONAHA.120.047430.

4. Lopes R.D., de Barros E. Silva P.G.M., Furtado R.H.M. et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253–63. https://doi.org/10.1016/S0140-6736(21)01203-4.

5. Mansory E.M., Srigunapalan S., Lazo-Langner A. Venous thromboembolism in hospitalized critical and noncritical COVID-19 patients: a systematic review and meta-analysis. TH Open. 2021;5(3):e286–e294. https://doi.org/10.1055/s-0041-1730967.

6. Lodigiani C., Iapichino G., Carenzo L. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024.

7. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6): e20200652. https://doi.org/10.1084/jem.20200652.

8. Machlus K.R., Italiano J.E. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–96. https://doi.org/10.1083/jcb.201304054.

9. Ribeiro L.S., Branco L.M., Franklin B.S. Regulation of innate immune responses by platelets. Front Immunol. 2019;10:1320. https://doi.org/10.3389/fimmu.2019.01320.

10. Liu J.Z., van Sommeren S., Huang H. et al; International Multiple Sclerosis Genetics Consortium, International IBD Genetics Consortium. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. https://doi.org/10.1038/ng.3359.

11. Riaz A.H., Tasma B.E., Woodman M.E. et al. Human platelets efficiently kill IgG-opsonized E. coli. FEMS Immunol Med Microbiol. 2012;65(1):78–83. https://doi.org/10.1111/j.1574-695X.2012.00945.x.

12. Martel C., Cointe S., Maurice P. et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS One. 2011;6(4):e18812. https://doi.org/10.1371/journal.pone.0018812.

13. Clemetson K.J., Clemetson J.M., Proudfoot A.E. et al. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood. 2000;96(13):4046–54.

14. D'Atri L.P., Etulain J., Rivadeneyra L. et al. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage. J Thromb Haemost. 2015;13(5):839–50. https://doi.org/10.1111/jth.12842.

15. Assinger A. Platelets and infection – an emerging role of platelets in viral infection. Front Immunol. 2014;5:649. https://doi.org/10.3389/fimmu.2014.00649.

16. Ojha A., Nandi D., Batra H. et al. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep. 2017;7:41697. https://doi.org/10.1038/srep41697.

17. Baker J.V. Chronic HIV disease and activation of the coagulation system. Thromb Res. 2013;132(5):495–99. https://doi.org/10.1016/j.thromres.2013.08.016.

18. Jansen A.J.G., Spaan T., Low H.Z. et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv. 2020;4(13):2967–78. https://doi.org/10.1182/bloodadvances.2020001640.

19. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8. https://doi.org/0.1056/NEJMoa2015432.

20. Bonaventura A., Vecchié A., Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29. https://doi.org/10.1038/s41577-021-00536-9.

21. Page M.J., Pretorius E. A champion of host defense: a generic large-scale cause for platelet dysfunction and depletion in infection. Semin Thromb Hemost. 2020;46(3):302–19. https://doi.org/10.1055/s-0040-1708827.

22. Mellema R.A., Crandel J., Petrey A.C. Platelet dysregulation in the pathobiology of COVID. Hamostaseologie. 2022;42(4):221–8. https://doi.org/10.1055/a-1646-3392.

23. Zhang Y., Zeng Х., Jiao Y, et al. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19, Thromb Res. 202;193:110–5, https://doi.org/10.1016/j.thromres.2020.06.008.

24. Bobirca A., Bobirca F., Ancu I. et al. COVID-19 – a trigger factor for severe immune-mediated thrombocytopenia in active rheumatoid arthritis. Life (Basel). 2022;12(1):77. https://doi.org/10.3390/life12010077.

25. Xia S., Xu W., Wang Q. et al. Peptide-based membrane fusion inhibitors targeting HCOV-229E spike protein HR1 and HR2 domains. Int J Mol Sci. 2018;19(2):487. https://doi.org/10.3390/ijms19020487.

26. Aldridge R.W., Lewer D., Beale S. et al.; Flu Watch Group. Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the Flu Watch cohort study. Wellcome Open Res. 2020;5:52. https://doi.org/10.12688/wellcomeopenres.15812.2.

27. Wickström M., Larsson R., Nygren P., Gullbo J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 2011;102(3):501–8. https://doi.org/10.1111/j.1349-7006.2010.01826.x.

28. Ropa J., Cooper S., Capitano M. et al. Human hematopoietic stem, progenitor, and immune cells respond ex vivo to SARS-CoV-2 spike protein. Stem Cell Rev Rep. 2021;17(1):253–65. https://doi.org/10.1007/s12015-020-10056-z.

29. Schnaubelt S., Tihanyi D., Strassl R. et al. Hemophagocytic lymphohistiocytosis in COVID-19. Case reports of a stepwise approach. Medicine (Baltimore). 2021;100(12):e25170. https://doi.org/10.1097/MD.0000000000025170.

30. Dimopoulos G., de Mast Q., Markou N. et al. Favorable anakinra responses in severe Covid-19 patients with secondary hemophagocyticlymphohistiocytosis. Cell Host Microbe. 2020;28(1):117–123.e1. https://doi.org/10.1016/j.chom.2020.05.007.

31. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022.

32. Bashash D., Hosseini-Baharanchi F.S., Rezaie-Tavirani M. et al. The prognostic value of thrombocytopenia in COVID-19 patients; a systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8(1):e75.

33. Bhattacharjee S., Banerjee M. Immune thrombocytopenia secondary to COVID-19: fsystematic review. SN Compr Clin Med. 2020;2(11):2048–58. https://doi.org/10.1007/s42399-020-00521-8.

34. Bradley B.T., Maioli H., Johnston R. et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–32. https://doi.org/10.1016/S0140-6736(20)31305-2.

35. Lee S., Chary M., Salehi I., Bansal R. Immune-mediated adalimumabinduced thrombocytopenia for the treatment of ulcerative colitis. Int J Pharm Pharm Sci. 2015;7(7):456–8.

36. Xu P., Qi Zhou, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205–8. https://doi.org/10.1007/s00277-020-04019-0.

37. Tiwari R., Mishra A.R., Mikaeloff F. et al. In silico and in vitro studies reveal complement system drives coagulation cascade in SARS-CoV-2 pathogenesis. Comput Struct Biotechnol J. 2020;18:3734–44. https://doi.org/10.1016/j.csbj.2020.11.005.

38. Pavord S., Thachil J., Hunt B.J. et al. Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. Br J Haematol. 2020;189(6):1038–43. https://doi.org/10.1111/bjh.16775.

39. McKenzie S.E., Taylor S.M., Malladi P. et al. The role of the human Fc receptor Fcγriia in the immune clearance of platelets: A transgenic mouse model. J Immunol. 1999;162(7):4311–8.

40. Daviet F., Guervilly C., Baldesi O. et al. Heparin-induced thrombocytopenia in severe COVID-19. Circulation. 2020;142(19):1875–7. https://doi.org/10.1161/CIRCULATIONAHA.120.049015.

41. Nazy I., Jevtic S.D., Moore J.C. et al. Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J Thromb Haemost. 2021;19(5):1342–7. https://doi.org/10.1111/jth.15283.

42. Jaax M.E., Krauel K., Marschall T. et al. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4. Blood. 2013;122(2):272–81. https://doi.org/10.1182/blood-2013-01-478966.

43. Warkentin T.E. Heparin-induced thrombocytopenia: pathogenesis and management. Br J Haematol. 2003;121(4):535–55. https://doi.org/10.1046/j.1365-2141.2003.04334.x.

44. Warkentin T.E. Clinical picture of heparin-induced thrombocytopenia (HIT) and its differentiation from non-HIT thrombocytopenia. Thromb Haemost. 2016;116(5):813–22. https://doi.org/10.1160/TH16-06-0435.

45. Greinacher A., Thiele T., Warkentin T.E. et al. Thrombotic thrombocytopenia after ChAdOx1 nCOV-19 vaccination. N Engl J Med. 2021;384(22):2092–101. https://doi.org/10.1056/NEJMoa2104840.

46. Iba T., Levy J.H. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic thrombocytopenia. Trends Cardiovasc Med. 2022;32(1):1–9. https://doi.org/10.1016/j.tcm.2021.08.012.

47. Zhang S., Liu Y., Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120. https://doi.org/10.1186/s13045-020-00954-7.

48. Barrett T.J., Bilaloglu S., Cornwell M. et al. Platelets contribute to disease severity in COVID-19. J Thromb Haemost. 2021;19(12):3139–53. https://doi.org/10.1111/jth.15534.

49. Zaid Y., Puhm F., Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ Res. 2020;127(11):1404–18. Online ahead of print. https://doi.org/10.1161/CIRCRESAHA.120.317703.

50. Gadanec L.K., McSweeney K.R., Qaradakhi T. et al. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021;22(3):992. https://doi.org/10.3390/ijms22030992.

51. Cunin P., Bouslama R., Machlus K.R. et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife. 2019;8:e44031. https://doi.org/10.7554/eLife.44031.

52. Sacchi A., Grassi G., Notari S. et al. Expansion of myeloid derived suppressor cells contributes to platelet activation by L-arginine deprivation during SARS-CoV-2 infection. Cells. 2021;10(8):2111. https://doi.org/10.3390/cells10082111.

53. Sacchi A., Grassi G., Bordoni V. et al. Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome. Cell Death Dis. 2020;11(10):921. https://doi.org/10.1038/s41419-020-03125-1.

54. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82. https://doi.org/10.1038/nri1785.

55. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–70. https://doi.org/10.1016/j.immuni.2010.11.011.

56. Hahn S., Giaglis S., Chowdury C.S. et al. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol. 2013;35(4):439–53. https://doi.org/10.1007/s00281-013-0380-x.

57. Gupta A.K., Giaglis S., Hasler P., Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS One. 2014;9(5):e97088. https://doi.org/10.1371/journal.pone.0097088.

58. Lai J.J., Cruz F.M., Rock K.L. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity. 2020;52(1):123–35.e6. https://doi.org/10.1016/j.immuni.2019.11.013.

59. Arcanjo A., Logullo J., Menezes C.C. et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 2020;10(1):196300. https://doi.org/10.1038/s41598-020-76781-0.

60. Batiha G.E., Shaheen H.M., Al-Kuraishy H.M. et al. Possible mechanistic insights into iron homeostasis role of the action of 4-aminoquinolines (chloroquine/hydroxychloroquine) on COVID-19 (SARS-CoV-2) infection. Eur Rev Med Pharmacol Sci. 2021;25(23):7565–84. https://doi.org/10.26355/eurrev_202112_27456.

61. Al-Kuraishy H.M., Al-Gareeb A.I., Alblihed M. et al. COVID-19 in relation to hyperglycemia and diabetes mellitus. Front Cardiovasc Med. 2021;8:644095. https://doi.org/10.3389/fcvm.2021.644095.

62. Khawaja A.A., Taylor K.A., Lovell A.O. et al. HIV antivirals affect endothelial activation and endothelial-platelet crosstalk. Circ Res. 2020;127(11):1365–80. https://doi.org/10.1161/CIRCRESAHA.119.316477.

63. Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. Obstetrics, Gynecology and Reproduction. 2021;15(4):335–50. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.238.

64. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–4. https://doi.org/10.1126/science.abb8925.

65. Fard M.B., Fard S.B., Ramazi, S. et al. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thromb J. 2021;19(1):59. https://doi.org/10.1186/s12959-021-00311-9.

66. Goshua G., Pine A.B., Meizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. https://doi.org/10.1016/S2352-3026(20)30216-7.

67. Comer S.P., Cullivan S., Szklanna P.B. et al.; COCOON Study investigators. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biol. 2021;19(2):e3001109. https://doi.org/10.1371/journal.pbio.3001109.

68. Althaus K., Marini I., Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood. 2021;137(8):1061–71. https://doi.org/10.1182/blood.2020008762.

69. Ivanov I.I., Apta B.H.R., Bonna A.M., Harper M.T. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep. 2019;9(1):13397. https://doi.org/10.1038/s41598-019-49635-7.

70. Etulain J., Martinod K., Wong S.L. et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–6. https://doi.org/10.1182/blood-2015-01-624023.

71. Manne B.K., Denorme F., Middleton E.A. et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–29. https://doi.org/10.1182/blood.2020007214.

72. Stalker T.J., Newman D.K., Ma P. et al. Platelet signaling. Handb Exp Pharmacol. 2012;(210):59–85. https://doi.org/10.1007/978-3-642-29423-5_3.

73. Shen B., Yi X., Sun Y. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020;182(1):59–72.e15. https://doi.org/10.1016/j.cell.2020.05.032.

74. Kruger A., Vlok M., Turner S. et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc Diabetol. 2022;21(1):190. https://doi.org/10.1186/s12933-022-01623-4.

75. Maxwell A.J., Ding J., You Y. et al. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol. 2020;109(1):35–47. https://doi.org/10.1002/JLB.4COVR0920-552RR.

76. Alvarez A., Rios-Navarro C., Blanch-Ruiz M.A. et al. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: a step from inflammation to thrombosis. Antiviral Res. 2017;141:179–85. https://doi.org/10.1016/j.antiviral.2017.03.001.

77. Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. https://doi.org/10.1182/blood-2011-03-343061.

78. Middleton E.A., He X.Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79. https://doi.org/10.1182/blood.2020007008.

79. Van der Poll T., van de Veerdonk F.L., Scicluna B.P., Netea M.G. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–20. https://doi.org/10.1038/nri.2017.36.

80. Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–7. https://doi.org/10.1172/JCI141374.

81. Hottz E.D., Martins-Gonçalves R. et al. Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Adv. 2022;6(17):5085–99. https://doi.org/10.1182/bloodadvances.2021006680.

82. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020;136(11):1330–41. https://doi.org/10.1182/blood.2020007252.

83. Li T., Yang Y., Li Y. et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J Clin Invest. 2022;132(4):e150101. https://doi.org/10.1172/JCI150101.

84. Portier I., Campbell R.A. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc Biol. 2021;41(1):70–8. https://doi.org/10.1161/ATVBAHA.120.314645.

85. Rolla R., Puricelli C., Bertoni A. et al. Platelets: "multiple choice" effectors in the immune response and their implication in COVID-19 thromboinflammatory process. Int J Lab Hematol. 2021;43(5):895–906. https://doi.org/10.1111/ijlh.13516.

86. Olsson A.K., Cedervall J. The pro-inflammatory role of platelets in cancer. Platelets. 2018;29(6):569–73. https://doi.org/10.1080/09537104.2018.14 53059.

87. Semple J.W., Italiano J.E., Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74. https://doi.org/10.1038/nri2956.

88. Gockel L.M., Nekipelov K., Ferro V. et al. Tumour cell-activated platelets modulate the immunological activity of CD4+, CD8+, and NK cells, which is efficiently antagonized by heparin. Cancer Immunol Immunother. 2022;71:2523–33. https://doi.org/10.1007/s00262-022-03186-5.

89. Flego D., Cesaroni S., Romiti G.F. et al; Vax-SPEED-IT Study Group. Platelet and immune signature associated with a rapid response to the BNT162b2 mRNA COVID-19 vaccine. J Thromb Haemost. 2022;20(4):961–74. https://doi.org/10.1111/jth.15648.


Review

For citations:


Gashimova N.R., Bitsadze V.O., Pankratyeva L.L., Khizroeva J.Kh., Slukhanchuk E.V., Grigoreva K.N., Tsibizova V.I., Gris J., Elalamy I., Ay C., Blinov D.V., Serov V.N., Makatsariya A.D. Dysregulated platelet function in COVID-19 patients. Obstetrics, Gynecology and Reproduction. 2022;16(6):692-705. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.372

Views: 4213


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)