Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Immunothrombosis in cancer patients: contribution of neutrophil extracellular traps, ADAMTS-13 and von Willebrand factor

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.364

Abstract

Introduction. Neutrophil extracellular traps (NETs) and von Willebrand factor (vWF) are integral players in thrombosis and inflammation in cancer patients. It has been increasingly evident that an active interplay exists between NETs and vWF. Some studies suggest that NETs cause decrease in ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type 1 motif, member 13) activity, being an arm in the pathogenesis of both thrombotic microangiopathies (TMA) and other thrombotic complications during oncological process.

Aim: to assess a crosstalk between NETs, vWF, and ADAMTS-13 in uterine, ovarian, breast malignant neoplasms as well as cervical canal adenocarcinoma.

Materials and Methods. From September 2019 to July 2022, a prospective controlled interventional non-randomized study was carried out with 106 patients hospitalized for planned surgical treatment aged 30 to 72 years. The main group included 73 patients with malignant neoplasms of the female genital organs and mammary glands, stage I–III: uterine cancer (subgroup 1; n = 18), ovarian cancer (subgroup 2; n = 21), cervical cancer – adenocarcinoma of cervical canal (subgroup 3; n = 9) and breast cancer (subgroup 4; n = 25). The control group consisted of 33 women with female genital tract and breast benign neoplasms. In all patients, serum levels of vWF, citrullinated histone H3 (citH3), MPO (myeloperoxidase) antigen, ADAMTS-13 activity, ADAMTS-13 antigen, and D-dimer were evaluated.

Results. The study revealed significant differences in the concentration of NETosis markers between the main and control groups. Patients with uterine cancer and adenocarcinoma of the cervical canal peaked at NETosis markers. At the same time, there were significant differences in citH3 concentration among patients with «early» (stage I) and «not early» (stage II–III) disease forms. While assessing level of von Willebrand factor (vWF:Ag), antigen (ADAMTS-13:Ag), and ADAMTS-13 activity (ADAMTS-13:Ac), significant differences were found between the main and control groups (p < 0.0001). The vWF in the main groups was sharply increasedwhereas ADAMTS-13 antigen concentration and activity were decreased. A сorrelation analysis among oncological patients in main group showed that while citH3 level increased, it was also paralleled with rise in vWF:Ag (ρ = 0.80; p < 0.01) and MPO:Ag (ρ = 0.87; p < 0.01); increase in MPO:Ag level was coupled to rise in vWF:Ag (ρ = 0.70; p< 0.01), but increase in vWF:Ag occurred along with decline in ADAMTS-13:Ac (ρ = –0.43; p < 0.01) and ADAMTS-13:Ag (ρ= –0.42; p < 0.01).

Conclusion. The interplay between NET, vWF, and ADAMTS-13 leads to a vicious circle, reduces ADAMTS-13 activity by increasing serum vWF concentration, which positively correlates with severity and mortality in TMA, acute ischemic infarction, and COVID-19. Targeting the NETs-vWF axis may pave the way for therapeutic strategies for immunothrombosis in various diseases, including cancer.

About the Authors

E. V. Slukhanchuk
Sechenov University
Russian Federation

Ekaterina V. Slukhanchuk – MD, PhD, Associate Professor, Department of Obstetrics and Gynecology, Filatov Clinical Institute of Children’s Health

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



V. O. Bitsadze
Sechenov University
Russian Federation

Victoria O. Bitsadze – MD, Dr Sci Med, Professor of RAS, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of
Children’s Health

Scopus Author ID: 6506003478

Researcher ID: F-8409-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



A. G. Solopova
Sechenov University
Russian Federation

Antonina G. Solopova – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children's Health

Scopus Author ID: 6505479504

Researcher ID: Q-1385-2015.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



J. Kh. Khizroeva
Sechenov University
Russian Federation

Jamilya Kh. Khizroeva – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 57194547147

Researcher ID: F-8384-2017.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



V. I. Tsibizova
Almazov National Medical Research Centre, Health Ministry of Russian Federation
Russian Federation

Valentina I. Tsibizova – MD, PhD, Obstetrician-Gynecologist, Research Laboratory of Operative Gynecology, Institute of Perinatology and Pediatrics; Physician, Department of Functional and Ultrasound Diagnostics

2 Akkuratova Str., Saint Petersburg 197341



J.-K. Gris
Sechenov University; University of Montpellier
Russian Federation

Jean-Christophe Gris – MD, Dr Sci Med, Professor, Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health; Professor of Haematology, Head of the Laboratory of Haematology, Faculty of Biological and Pharmaceutical Sciences; Foreign Member of RAS

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



I. Elalamy
Sechenov University; Medicine Sorbonne University; Hospital Tenon
Russian Federation

Ismail Elalamy – MD, Dr Sci Med, Professor, Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health; Professor; Director of Hematology, Department of Thrombosis Center, Hospital Tenon

Scopus Author ID: 7003652413

Researcher ID: AAC-9695-2019.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



D. V. Shcherbakov
Sechenov University
Russian Federation

Denis V. Shcherbakov – MD, PhD, Associate Professor, Department of General Hygiene, Erisman Institute of Public Health

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



L. L. Pankratyeva
Vorokhobov City Clinical Hospital № 67; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Health Ministry of Russian Federation
Russian Federation

Liudmila L. Pankratyeva – MD, Dr Sci Med, Head of the Clinical Research Center; Neonatologist, Hematologist,
Associate Professor, Professor, Department of Pediatrics and Health Organization

Scopus Author ID: 7006391091

Author ID: 697284.

2/44 Salyama Adilya Str., Moscow 123423;

1 Samora Machel Str., Moscow 117997



L. A. Ashrafyan
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Health Ministry of Russian Federation
Russian Federation

Levon A. Ashrafyan – MD, Dr Sci Med, Professor, Academician of RAS, Honored Doctor of RF, Director of the Institute of Oncogynecology and Mammology, Deputy Director

Scopus Author ID: 57194173388

4 Academika Oparina Str., Moscow 117997



A. D. Makatsariya
Sechenov University
Russian Federation

Alexander D. Makatsariya – MD, Dr Sci Med, Academician of RAS, Professor, Head of the Department of Obstetrics, Gynecology and Perinatal Medicine, Filatov Clinical Institute of Children’s Health

Scopus Author ID: 57222220144

Researcher ID: M-5660-2016.

2 bldg. 4, Bolshaya Pirogovskaya Str., Moscow 119991



References

1. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.

2. Bernardo A., Ball C., Nolasco L. et al. Platelets adhered to endothelial cellbound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost. 2005;3(3):562–70. https://doi.org/10.1111/j.1538-7836.2005.01122.x.

3. Albrengues J., Shields M.A., Ng D. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.

4. Delgado-Rizo V., Martínez-Guzmán M.A., Iñiguez-Gutierrez L. et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. https://doi.org/10.3389/fimmu.2017.00081.

5. Cao W., Pham H.P., Williams L.A. et al. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura. Haematologica. 2016;101(11):1319–26. https://doi.org/10.3324/haematol.2016.149021.

6. Petretto A., Bruschi M., Pratesi F. et al. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One. 2019;14(7):e0218946. https://doi.org/10.1371/journal.pone.0218946.

7. Staessens S., Denorme F., Francois O. et al. Structural analysis ofischemic stroke thrombi: histological indications for therapy resistance. Haematologica. 2020;105(2):498–507. https://doi.org/10.3324/haematol.2019.219881.

8. Brill A., Fuchs T., Savchenko A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–44. https://doi.org/10.1111/j.1538-7836.2011.04544.x.

9. Thålin C., Hisada Y., Lundström S. et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. https://doi.org/10.1161/ATVBAHA.119.312463.

10. Thiam H.R., Wong S.L., Qiu R. et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020;117(13):7326–37. https://doi.org/10.1073/pnas.1909546117.

11. Yipp B.G., Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94. https://doi.org/10.1182/blood-2013-04-457671.

12. Yousefi S., Mihalache C., Kozlowski E. et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44. https://doi.org/10.1038/cdd.2009.96.

13. Laridan E., Martinod K., De Meyer S.F. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93. https://doi.org/10.1055/s-0038-1677040.

14. Hounkpe B.W., Fiusa M.M.L., Colella M.P. et al. Role of innate immunitytriggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies. Sci Rep. 2015;5:17822. https://doi.org/10.1038/srep17822.

15. Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and plateletindependent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–84. https://doi.org/10.1161/ATVBAHA.114.304114.

16. Fuchs T.A., Bhandari A.A., Wagner D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118(13):3708–14. https://doi.org/10.1182/blood-2011-01-332676.

17. Massberg S., Grahl L., von Bruehl M.-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96. https://doi.org/10.1038/nm.2184.

18. Frangou E., Vassilopoulos D., Boletis J., Boumpas D.T. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun Rev. 2019;18(8):751–60. https://doi.org/10.1016/j.autrev.2019.06.011.

19. Denning N.-.L, Aziz M., Gurien S.D., Wang P. DAMPs and NETs in sepsis. Front Immunol. 2019;10:2536. https://doi.org/10.3389/fimmu.2019.02536.

20. Doring Y., Soehnlein O., Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120(4):736–43. https://doi.org/10.1161/CIRCRESAHA.116.309692.

21. Grover S.P., Nigel M. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(7):709–25. https://doi.org/10.1161/ATVBAHA.117.309846.

22. Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012;120(10):2133–43. https://doi.org/10.1182/blood-2012-06-437772.

23. Jewkes R., Sikweyiya Y., Morrell R., Dunkle K. Gender inequitable masculinity and sexual entitlement in rape perpetration South Africa: findings of a cross-sectional study. PloS One. 2011;6(12):e29590. https://doi.org/10.1371/journal.pone.0029590.

24. Zhou J., Qu F., Sang X. et al. Acupuncture and auricular acupressure in relieving menopausal hot flashes of bilaterally ovariectomized chinese women: a randomized controlled trial. Evid Based Complement Alternat Med. 2011;2011:713274. https://doi.org/10.1093/ecam/nep001.

25. Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–7. https://doi.org/10.1172/JCI141374.

26. Frangou E., Chrysanthopoulou A., Kambas K. et al. FP098REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) by the release of neutrophil extracellular traps (NETs). Nephrol Dial Transplant. 2018;33(suppl_1):i80–i80. https://doi.org10.1093/ndt/gfy104.FP098.

27. Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371(3):567–76. https://doi.org/10.1007/s00441-017-2727-4.

28. Carestia A., Kaufman T., Rivadeneyra L. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99(1):153–62. https://doi.org/10.1189/jlb.3A0415-161R.

29. Maugeri N., Campana L., Gavina M. et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–88. https://doi.org/10.1111/jth.12710.

30. Gol S., Pena R.N., Rothschild M.F. et al. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Sci Rep. 2018;8(1):14336. https://doi.org/10.1038/s41598-018-32710-w.

31. Semeraro F., Ammollo C.T., Morrissey J.H. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61. https://doi.org/10.1182/blood-2011-03-343061.

32. Zhou Y.-F., Eng E.T., Zhu J. et al. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–58. https://doi.org/10.1182/blood-2012-01-405134.

33. Löf A., Müller J.P., Brehm M.A. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2018;233(2):799–810. https://doi.org/10.1002/jcp.25887.

34. Pendu R., Terraube V., Christophe O.D. et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006;108(12):3746–52. https://doi.org/10.1182/blood-2006-03-010322.

35. Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.

36. Lancellotti S., Basso M., De Cristofaro R. Proteolytic processing of von Willebrand factor by adamts13 and leukocyte proteases. Mediterr J Hematol Infect Dis. 2013;5(1):e2013058. https://doi.org/10.4084/MJHID.2013.058.

37. Weber C., Jenke A., Chobanova V., et al. Targeting of cell-free DNA by DNase I diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep. 2019;9(1):19249. https://doi.org/10.1038/s41598-019-55863-8.

38. South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018;16(1):6–18. https://doi.org/10.1111/jth.13898.

39. Scully M., Cataland S.R., Peyvandi F. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.

40. Soejima K., Mimura N., Hiroshima M. et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem. 2001;130(4):475–80. https://doi.org/10.1093/oxfordjournals.jbchem.a003009.

41. Dong J.-f. Structural and functional correlation of ADAMTS13. Curr Opin Hematol. 2007;14(3):270–6. https://doi.org/10.1097/MOH.0b013e3280d35820.

42. Tao Z., Wang Y., Choi H. et al. Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated mutants of ADAMTS-13 under flow. Blood. 2005;106(1):141–3. https://doi.org/10.1182/blood-2004-11-4188.

43. Huang R.-H., Fremont D.H., Diener J.L. et al. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure. 2009;17(11):1476–84. https://doi.org/10.1016/j.str.2009.09.011.

44. Grässle S., Huck V., Pappelbaum K.I. et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2014;34(7):1382–9. https://doi.org/10.1161/ATVBAHA.113.303016.

45. Edwards J.V., Howley P.S. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. J Biomed Mater Res A. 2007;83(2):446–54. https://doi.org/10.1002/jbm.a.31171.

46. Urisono Y., Sakata A., Matsui H. et al. Von Willebrand factor aggravates hepatic ischemia-reperfusion injury by promoting neutrophil recruitment in mice. Thromb Haemost. 2018;118(4):700–8. https://doi.org/10.1055/s-0038-1636529.

47. Gragnano F., Sperlongano S., Golia E. et al. The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy. Mediators Inflamm. 2017;2017:5620314. https://doi.org/10.1155/2017/5620314.

48. Honda M., Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol. 2018;15(4):206–21. https://doi.org/10.1038/nrgastro.2017.183.

49. Farkas P., Csuka D., Mikes B. et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119–27. https://doi.org/10.1016/j.imbio.2016.10.014.

50. Richardson P. Phase II trial of single agent bortezomib (VELCADE^(! R)) in patients with previously untreated multiple myeloma. Blood. 2004;104:100a.

51. Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor–cleaving protease (ADAMTS13) in patients with sepsisinduced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34. https://doi.org/10.1182/blood-2005-03-1087.

52. Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93. https://doi.org/10.1182/blood-2004-03-1101.

53. Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77950:598–625. https://doi.org/10.1189/jlb.1204697.

54. Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706–12. https://doi.org/10.1182/blood-2009-03-213967.

55. Nishimura K., Sano M., Ohtaka M. et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem. 2011;286(6):4760–71. https://doi.org/10.1074/jbc.M110.183780.

56. Pillai V.G., Bao J., Zander C.B. et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128(1):110–9. https://doi.org/10.1182/blood-2015-12-688747.

57. Quinn K., Henriques M., Parker T. et al. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2008;295(5):H1817–24. https://doi.org/10.1152/ajpheart.00472.2008.

58. Higazi A.A., Ganz T., Kariko K., Cines D.B. Defensin modulates tissue-type plasminogen activator and plasminogen binding to fibrin and endothelial cells. J Biol Chem. 1996;271(30):17650–5. https://doi.org/10.1074/jbc.271.30.17650.

59. Wong S.L., Wagner D.D. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):fj201800691R. https://doi.org/10.1096/fj.201800691R. Online ahead of print.

60. Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury. Circ Res. 2019;125(5):507–19. https://doi.org/10.1161/CIRCRESAHA.118.314571.

61. Buchtele N., Schwameis M., Gilbert J.C. et al. Targeting von Willebrand factor in ischaemic stroke: focus on clinical evidence. Thromb Haemost. 2018;118(6):959–78. https://doi.org/10.1055/s-0038-1648251.

62. Laridan E., Denorme F., Desender L. et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol. 2017;82(2):223–32. https://doi.org/10.1002/ana.24993.

63. Pena-Martinez C., Duran-Laforet V., Garcia-Culebras A. et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance. Stroke. 2019;50(11):3228–37. https://doi.org/10.1161/STROKEAHA.119.026848.

64. Novotny J., Oberdieck P., Titova A. et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346–e2360. https://doi.org/10.1212/WNL.0000000000009532.

65. Hada M., Kaminski M., Bockenstedt P., McDonagh J. Covalent crosslinking of von Willebrand factor to fibrin. Blood. 1986;68(1):95–101.

66. Miszta A., Pelkmans L., Lindhout T. et al. Thrombin-dependent incorporation of von Willebrand factor into a fibrin network. J Biol Chem. 2014;289(52):35979–86. https://doi.org/10.1074/jbc.M114.591677.

67. Denorme F., Langhauser F., Desender L. et al. ADAMTS13-mediated thrombolysis of t-PA-resistant occlusions in ischemic stroke in mice. Blood. 2016;127(19):2337–45. https://doi.org/10.1182/blood-2015-08-662650.


Review

For citations:


Slukhanchuk E.V., Bitsadze V.O., Solopova A.G., Khizroeva J.Kh., Tsibizova V.I., Gris J., Elalamy I., Shcherbakov D.V., Pankratyeva L.L., Ashrafyan L.A., Makatsariya A.D. Immunothrombosis in cancer patients: contribution of neutrophil extracellular traps, ADAMTS-13 and von Willebrand factor. Obstetrics, Gynecology and Reproduction. 2022;16(6):648-663. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.364

Views: 1083


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)