Preview

Obstetrics, Gynecology and Reproduction

Advanced search

Photodynamic therapy and cervical intraepithelial neoplasia: current achievements and development prospects

https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.287

Abstract

Nowadays, photodynamic therapy (PDT) is a high-technology actively developing treatment method used in clinical medicine. An interest in this method is primarily due to the fact that its destructive action is based on the mechanisms of free radical oxidation, altered tumor vascular stroma and immune cell-mediated elimination. Owing to current research, improving the quality of photosensitizers and light sources, it becomes possible to expand indications for using this method beyond oncological practice. Generalized data on PDT effectiveness and safety for the treatment of cervical lesions, as well as the ease to use, allow us to attribute this technique to some promising approaches.

About the Authors

A. I. Ishchenko
Sechenov University
Russian Federation

Anatoly I. Ishchenko – MD, Dr Sci Med, Professor, Head of the Department of Obstetrics and Gynecology № 1, Sklifosovsky Institute of Clinical Medicine

119991, Moscow, Bolshaya Pirogovskaya Str., 2 bldg. 4



I. V. Reshetov
Sechenov University
Russian Federation

Igor V. Reshetov – MD, Dr Sci Med, Professor, Academician of RAS, Head of the Department of Oncology and Reconstructive Surgery, Sklifosovsky Institute of Clinical Medicine

119991, Moscow, Bolshaya Pirogovskaya Str., 2 bldg. 4



E. A. Sosnova
Sechenov University
Russian Federation

Elena A. Sosnova – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology № 1, Sklifosovsky Institute of Clinical Medicine

119991, Moscow, Bolshaya Pirogovskaya Str., 2 bldg. 4



A. L. Unanyan
Sechenov University
Russian Federation

Ara L. Unanyan – MD, Dr Sci Med, Professor, Department of Obstetrics and Gynecology № 1, Sklifosovsky Institute of Clinical Medicine

119991, Moscow, Bolshaya Pirogovskaya Str., 2 bldg. 4



A. A. Ishchenko
National Medical Research Center "Treatment and Rehabilitation Center", Health Ministry of Russian Federation
Russian Federation

Anton A. Ishchenko – MD, PhD, Head of the Center for Gynecology and New Reproductive Technologies

125367, Moscow, Ivankovskoe Нighway, 3



L. A. Klyukina
Sechenov University
Russian Federation

Lidiya A. Klyukina – MD, Postgraduate Student, Department of Obstetrics and Gynecology № 1, Sklifosovsky Institute of Clinical Medicine

119991, Moscow, Bolshaya Pirogovskaya Str., 2 bldg. 4



References

1. Wan M.T., Lin J.Y. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol. 2014;7:145–63. https://doi.org/10.2147/CCID.S35334.

2. Dougherty T.J. Photodynamic therapy (PDT) of malignant tumors. Crit Rev Oncol Hematol. 1984;2(2):83–116. https://doi.org/10.1016/s1040-8428(84)80016-5.

3. Juarranz A., Jaén P., Sanz-RodrÍguez F. et al. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10(3):148–54. https://doi.org/10.1007/s12094-008-0172-2.

4. Akaza E., Mori R., Yuzawa M. Long-term results of photodynamic therapy of polypoidal choroidal vasculopathy. Retina. 2008;28(5):717–22. https://doi.org/10.1097/IAE.0b013e31816577cb.

5. Li X., Ferrel G.I., Guerra M.C. et al. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochem Photobiol Sci. 2011;10(5):817–21. https://doi.org/10.1039/c0pp00306a.

6. Malignant neoplasms in Russia in 2018 (morbidity and mortality). Eds. A.D. Kaprin, V.V. Starinsky, G.V. Petrova. [Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost' i smertnost'). Pod red. A.D. Kaprina, V.V. Starinskogo, G.V. Petrovoj]. Moscow: Moskovskij nauchno-issledovatel'skij onkologicheskij institut imeni P.A. Gercena – filial Federal'nogo gosudarstvennogo byudzhetnogo uchrezhdeniya «Nacional'nyj medicinskij issledovatel'skij centr radiologii» Ministerstva zdravoohraneniya Rossijskoj Federacii, 2019. 250 p.(In Russ.). Available at: https://oncologyassociation.ru/wp-content/uploads/2020/09/2018.pdf. [Accessed: 15.01.2022].

7. Arbyn М., Tommasino М., Depuydt С., Dillner J. Are 20 human papillomavirus types causing cervical cancer? J Pathol. 2014;234(4):431–5. https://doi.org/10.1002/path.4424.

8. Loopik D.L., IntHout J., Melchers W.J.G. et al. Oral contraceptive and intrauterine device use and the risk of cervical intraepithelial neoplasia grade III or worse: a population-based study. Eur J Cancer. 2020;124:102–9. https://doi.org/10.1016/j.ejca.2019.10.009.

9. Okunade K.S. Human papillomavirus and cervical cancer. In: Current perspectives in human papillomavirus. London, United Kingdom: IntechOpen, 2019. 1–13. https://doi.org/10.5772/intechopen.81581.

10. Handler M.Z., Handler N.S., Majewski S., Schwartz R.A. Human papillomavirus vaccine trials and tribulations: Clinical perspectives. J Am Acad Dermatol. 2015;73(5):743–56; quiz 757–8. https://doi.org/10.1016/j.jaad.2015.05.040.

11. Martin D., Gutkind J.S. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene. 2008;27 Suppl 2:S31–42. https://doi.org/10.1038/onc.2009.351.

12. Eversole G.M., Moriarty A.T., Schwartz M.R. et al. Practices of participants in the College of American Pathologists interlaboratory comparison program in cervicovaginal cytology, 2006. Arch Pathol Lab Med. 2010;134(3):331–5. https://doi.org/10.5858/134.3.331.

13. Novikova E.G., Trushina O.I. Photodynamic therapy in prevention of early cervical cancer HPV-related relapses. [Fotodinamicheskaya terapiya v profilaktike VPCh-associirovannyh recidivov nachal'nogo raka shejki matki]. Akusherstvo i ginekologiya. Novosti, mneniya, obuchenie. 2018;(1):34–43. (In Russ.).

14. Mello V., Sundstrom R.K. Cancer, Cervical intraepithelial neoplasia (CIN). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. Bookshelf ID: NBK544371.

15. Rungea A.S., Bernsteina M.E., Lucasa A.N., Tewari K.S. Cervical cancer in Tanzania: A systematic review of current challenges in six domains. Gynecol Oncol Rep. 2019;29:40–7. https://doi.org/10.1016/j.gore.2019.05.008.

16. Chiantore M.V., Mangino G., Iuliano M. et al. Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev. 2020;51:92–8. https://doi.org/10.1016/j.cytogfr.2019.12.009.

17. Wang R., Pan W., Jin L. et al. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020;471:88–102. https://doi.org/10.1016/j.canlet.2019.11.039.

18. Kjaer S.K., Frederiksen K., Munk C., Iftner T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. J Nat Cancer Inst. 2010;102(19):1478–88. https://doi.org/10.1093/jnci/djq356.

19. Seoud M., Tjalma W.A., Ronsse V. Cervical adenocarcinoma: moving towards better prevention. Vaccine. 2011;29(49):9148–58. https://doi.org/10.1016/j.vaccine.2011.09.115.

20. Holl K., Nowakowski A.M., Powell N. et al. Human papillomavirus prevalence and type-distribution in cervical glandular neoplasias: results from a European multinational epidemiological study. Int J Cancer. 2015;137(12):2858–68. https://doi.org/10.1002/ijc.29651.

21. Pirog E.C. Cervical adenocarcinoma: diagnosis of human papillomaviruspositive and human papillomavirus-negative tumors. Arch Pathol Lab Med. 2017;141(12):1653–67. https://doi.org/10.5858/arpa.2016-0356-RA.

22. Govindappagari S., Schiavone M.B., Wright J.D. Cervical neoplasia. Clin Obstet Gynecol. 2011;54(4):528–36. https://doi.org/10.1097/GRF.0b013e318236c606.

23. WHO guidelines. Use of cryotherapy for cervical intraepithelial neoplasia. Geneva, Switzerland: WHO, 2011. 40 р. Available at: https://apps.who.int/iris/bitstream/handle/10665/44776/9789241502856_eng.pdf?sequence=1. [Accessed: 15.01.2022].

24. WHO guidelines. WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention. Geneva, Switzerland: WHO, 2013. 60 р. Available at: https://apps.who.int/iris/bitstream/handle/10665/94830/9789241548694_eng.pdf?sequence=1. [Accessed: 15.01.2022].

25. Adamyan L.V., Artymuk N.V., Ashrafyan L.A. et al. Benign and precancerous cervix diseases from the perspective of cancer prevention: clinical guidelines (protocols for diagnosis and patient management). [Dobrokachestvennye i predrakovye zabolevaniya shejki matki s pozicii profilaktiki raka. Klinicheskie rekomendacii (protokoly diagnostiki i vedeniya bol'nyh)]. Moscow: Ministerstvo zdravoohraneniya Rossijskoj Federacii, 2017. 55 p. (In Russ.). Available at: https://moniiag.ru/wp-content/uploads/2019/07/Dobrok-i-predrakovye-zabolevaniya-shejkimatki.pdf. [Accessed: 15.01.2022].

26. Chen J.-Y., Wang Z.-L., Wang Z.-Y. et al. The risk factors of residual lesions and recurrence of the high-grade cervical intraepithelial lesions (HSIL) patients with positive-margin after conization. Medicine (Baltimore). 2018;97(41):e12792. https://doi.org/10.1097/MD.0000000000012792.

27. Sangkarat S., Ruengkhachorn I., Benjapibal M. et al. Long-term outcomes of a loop electrosurgical excision procedure for cervical intraepithelial neoplasia in a high incidence country. Asian Pac J Cancer Prev. 2014;15(2):1035–9. https://doi.org/10.7314/apjcp.2014.15.2.1035.

28. Leimbacher B., Samartzis N., Imesch P. et al. Inpatient and outpatient loop electrosurgery excision procedure for cervical intraepithelial neoplasia: a retrospective analysis. Arch Gynecol Obstet. 2012;285(5):1441–5. https://doi.org/10.1007/s00404-011-2148-7.

29. Liu X.-X., Qin F., Li X. The effects of excisional procedures of the uterine cervix on outcomes of pregnancy: a meta-analysis. Int J Clin Exp Med. 2016;9(6):9806–16.

30. Guo H.J., Guo R.X., Liu Y.L. Effects of loop electrosurgical excision procedure or cold knife conization on pregnancy outcomes. Eur J Gynaecol Oncol. 2013;34(1):79–82.

31. Jin G., Lanlan Z., Li C., Dan Z. Pregnancy outcome following loop electrosurgical excision procedure (LEEP): a systematic review and metaanalysis. Arch Gynecol Obstet. 2014;289(1):85–99. https://doi.org/10.1007/s00404-013-2955-0.

32. Bruinsma F.J., Quinn M.A. The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and metaanalysis. BJOG. 2011;118(9):1031–41. https://doi.org/10.1111/j.1471-0528.2011.02944.x.

33. Kocken M., Helmerhorst T.J., Berkhof J. et al. Risk of recurrent high-grade cervical intraepithelial neoplasia after successful treatment: a long-term multi-cohort study. Lancet Oncol. 2011;12(5):441–50. https://doi.org/10.1016/S1470-2045(11)70078-X.

34. Xiang L., Li J., Yang W. et al. Conization using an electrosurgical knife for cervical intraepithelial neoplasia and microinvasive carcinoma. PLoS One. 2015;10(7):e0131790. https://doi.org/10.1371/journal.pone.0131790.

35. Baalbergen A., Helmerhorst T.J.M. Adenocarcinoma in situ of the uterine cervix – a systematic review. Int J Gynecol Cancer. 2014;24(9):1543–8. https://doi.org/10.1097/IGC.0000000000000260.

36. Jiang Y., Chen C., Li L. Comparison of cold-knife conization versus loop electrosurgical excision for cervical adenocarcinoma in situ (ACIS): a systematic review and meta-analysis. PLoS One. 2017;12(1):e0170587. https://doi.org/10.1371/journal.pone.0170587.

37. Kır G., Karabulut M.H., Topal C.S., Yılmaz M.S. Endocervical glandular involvement, positive endocervical surgical margin and multicentricity are more often associated with high-grade than low-grade squamous intraepithelial lesion. J Obstet Gynaecol Res. 2012;38(9):1206–10. https://doi.org/10.1111/j.1447-0756.2012.01847.x.

38. Fu Y., Chen C., Feng S. et al. Residual disease and risk factors in patients with high-grade cervical intraepithelial neoplasia and positive margins after initial conization. Ther Clin Risk Manag. 2015;11:851–6. https://doi.org/10.2147/TCRM.S81802.

39. Bazhenov A.G., Huseynov K.D., Khadzhimba A.V. et al. Results of relapses treatment of cervical cancer. [Rezul'taty lecheniya recidivov raka shejki matki]. Voprosy onkologii. 2009;55(3):319–26. (In Russ.).

40. Rositch A.F., Soeters H.M., Offutt-Powell T.N. et al. The incidence of human papillomavirus infection following treatment for cervical neoplasia: a systematic review. Gynecol Oncol. 2014;132(3):767–79. https://doi.org/10.1016/j.ygyno.2013.12.040.

41. Zhang W., Zhang A., Sun W. et al. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia and human papilloma virus infection: A systematic review and meta-analysis of randomized clinical trials. Medicine (Baltimore). 2018;97(21):e10864. https://doi.org/10.1097/MD.0000000000010864.

42. Choi M.C., Jung S.G., Park H. et al. Photodynamic therapy for management of cervical intraepithelial neoplasia II and III in young patients and obstetric outcomes. Lasers Surg Med. 2013;45(9):564–72. https://doi.org/10.1002/lsm.22187.

43. Ichimura H., Yamaguchi S., Kojima A. et al. Eradication and reinfection of human papillomavirus after photodynamic therapy for cervical intraepithelial neoplasia. Intern J Clin Oncol. 2003;8(5):322–5. https://doi.org/10.1007/s10147-003-0354-4.

44. Soergel P., Dahl G.F., Onsrud M., Hillemanns P. Photodynamic therapy of cervical intraepithelial neoplasia 1-3 and human papilloma virus (HMV) infection with methylaminolevulinate and hexaminolevulinate. Lasers Surg Med. 2012;44(6):468–74. https://doi.org/10.1002/lsm.22041.

45. Istomin Y.P., Lapzevich T.P., Chalau V.N. et al. Photodynamic therapy of cervical intraepithelial neoplasia grades II and III with Photolon. Photodiagnosis Photodyn Ther. 2010;7(3):144–51. https://doi.org/10.1016/j.pdpdt.2010.06.005.

46. Soergel P., Wang X., Stepp H. et al. Photodynamic therapy of cervical intraepithelial neoplasia with hexaminolevulinate. Lasers Surg Med. 2008;40(9):611–5. https://doi.org/10.1002/lsm.20686.

47. Jeong C.H. Photodynamic therapy in the management of cervical intraepithelial neoplasia. In: Book of abstracts. 10th World Congress of the International Photodynamic Association. Munich, Germany, 2005. 1405.

48. Marcu L. Fluorescence lifetime techniques in medical applications. Ann Biomed Eng. 2012;40(2):304–31. https://doi.org/10.1007/s10439-011-0495-y.

49. Rocheleau J.V., Head W.S., Piston D.W. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem. 2004;279(30):31780–7. https://doi.org/10.1074/jbc.M314005200.

50. Wang X., Wang Y., Zhang Z. et al. Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy. Biomed Opt Express. 2020;11(4):1977–90. https://doi.org/10.1364/BOE.386999.

51. Takahashi K., Ikeda N., Nonoguchi N. et al. Enhanced expression of coproporphyrinogen oxidase in malignant brain tumors: CPOX expression and 5-ALA–induced fluorescence. Neuro Oncol. 2011;13(11):1234–43. https://doi.org/10.1093/neuonc/nor116.

52. Gu J., Fu C.Y., Ng B.K. et al. Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images. PLoS One. 2015;10(5):e0125706. https://doi.org/10.1371/journal.pone.0125706.

53. Aminodova I.P. New technologies in diagnosis of preinvasive cervical lesions. [Novye tekhnologii v diagnostike preinvazivnyh zabolevanij shejki matki]. Biomedical Photonics. 2015;4(4):11–6. (In Russ.). https://doi.org/10.24931/2413-9432-2015-4-4-11-16.


Review

For citations:


Ishchenko A.I., Reshetov I.V., Sosnova E.A., Unanyan A.L., Ishchenko A.A., Klyukina L.A. Photodynamic therapy and cervical intraepithelial neoplasia: current achievements and development prospects. Obstetrics, Gynecology and Reproduction. 2022;16(5):600-610. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.287

Views: 292


ISSN 2313-7347 (Print)
ISSN 2500-3194 (Online)