Тромбоциты, тромбовоспаление и онкологический процесс
https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.274
Аннотация
Всем давно известна важная роль, которую тромбоциты играют в тромбозе и гемостазе. Лабораторные и клинические данные указывают на то, что кроме этого тромбоциты способствуют прогрессии опухоли и ее метастазированию путем многообразных взаимодействий с опухолевыми клетками. На фоне онкологического процесса происходит модуляция функции тромбоцитов, повышение их активации и агрегации, что является одним из факторов риска тромбозов у онкологических больных. Сами тромбоциты усиливают диссеминацию опухолевых клеток, активируют эндотелиальные клетки, привлекают иммунные клетки к первичным и метастатическим участкам опухоли. В обзоре мы обобщаем текущие знания о сложных взаимодействиях между тромбоцитами и опухолевыми клетками, а также клетками микроокружения, обсуждаем вопросы разработки новых противоопуолевых агентов, направленных на различные звенья функционирования тромбоцитов.
Об авторах
Е. В. СлуханчукРоссия
Слуханчук Екатерина Викторовна – к.м.н., доцент кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова; врач акушер-гинеколог отделения абдоминальной хирургии и онкологии 2
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
119991, Москва, Абрикосовский пер., д. 2
В. О. Бицадзе
Россия
Бицадзе Виктория Омаровна – д.м.н., профессор РАН, профессор кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова. Scopus Author ID: 6506003478. Researcher ID: F-8409-2017
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
Д. Х. Хизроева
Россия
Хизроева Джамиля Хизриевна – д.м.н., профессор кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова. Scopus Author ID: 57194547147. Researcher ID: F-8384-2017
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
М. В. Третьякова
Россия
Третьякова Мария Владимировна – к.м.н., врач акушер-гинеколог, ассистент кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
А. Г. Солопова
Россия
Солопова Антонина Григорьевна – д.м.н., профессор кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова. Scopus Author ID: 6505479504. Researcher ID: Q-1385-2015
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
В. Н. Галкин
Россия
Галкин Всеволод Николаевич – д.м.н., профессор, главный врач
105005, Москва, Бауманская ул., д. 17/1
А. С. Шкода
Россия
Шкода Андрей Сергеевич – д.м.н., профессор, главный врач
123423, Москва, ул. Саляма Адиля, д. 2/44
В. И. Цибизова
Россия
Цибизова Валентина Ивановна – к.м.н., акушер-гинеколог НИЛ оперативной гинекологии Института перинатологии и педиатрии; врач отделения функциональной и ультразвуковой диагностики
197341, Санкт-Петербург, ул. Аккуратова, д. 2
В. И. Линников
Украина
Линников Валерий Иванович – д.м.н., профессор
65023, Одесса, ул. Новосельского, д. 68/2
И. Элалами
Россия
Элалами Исмаил – д.м.н., профессор кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова; профессор; директор гематологии Центра Тромбозов. Scopus Author ID: 7003652413. Researcher ID: AAC-9695-2019
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
Франция, 75006, Париж, Улица медицинского факультета, д. 12
Франция, 75020, Париж, Китайская улица, д. 4
Ж.-К. Гри
Россия
Гри Жан-Кристоф – д.м.н., профессор кафедры акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова; профессор гематологии, зав. лабораторией гематологии факультета биологических и фармацевтических наук Университета Монпелье и Университетской больницы Нима. Scopus Author ID: 7005114260. Researcher ID: AAA-2923-2019
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
Франция, 34090, Монпелье, ул. Огюста Бруссоне, д. 163
Б. Бреннер
Израиль
Бреннер Бенджамин – д.м.н., профессор, директор Института гематологии и трансплантации костного мозга; директор отдела внутренних болезней
31096 Хайфа, ул. Алия-а-Шния, д. 8
А. Д. Макацария
Россия
Макацария Александр Давидович – д.м.н., профессор, академик РАН, зав. кафедрой акушерства и гинекологии Клинического института детского здоровья имени Н.Ф. Филатова. Scopus Author ID: 57222220144. Researcher ID: M-5660-2016
119991, Москва, ул. Большая Пироговская, д. 2, стр. 4
Список литературы
1. Varki A. Trousseau's syndrome: multiple definitions and multiple mechanisms. Blood. 2007;110(6):1723–9. https://doi.org/10.1182/blood2006-10-053736.
2. Blom J.W., Doggen C.J., Osanto S., Rosendaal F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715–22. https://doi.org/10.1001/jama.293.6.715.
3. Duan Q., Zhang H., Zheng J., Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6(7):605–18. https://doi.org/10.1016/j.trecan.2020.02.022.
4. Mammadova-Bach E., Nagy M., Heemskerk J.W. et al. Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium. 2019;77:39–48. https://doi.org/10.1016/j.ceca.2018.11.005.
5. Scharf R.E. Platelet signaling in primary haemostasis and arterial thrombus formation: Part 1. Hamostaseologie. 2018;38(4):203–10. https://doi.org/10.1055/s-0038-1675144.
6. Silverstein M.D., Heit J.A., Mohr D.N. et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158(6):585–93. https://doi.org/10.1001/archinte.158.6.585.
7. Abdel-Razeq H., Mansour A., Saadeh S.S. et al. The application of current proposed venous thromboembolism risk assessment model for ambulatory patients with cancer. Clin Appl Thromb Hemost. 2018;24(3):429–33. https://doi.org/10.1177/1076029617692880.
8. Patell R., Rybicki L., McCrae K.R., Khorana A.A. Predicting risk of venous thromboembolism in hospitalized cancer patients: utility of a risk assessment tool. Am J Hematol. 2017;92(6):501–7. https://doi.org/10.1002/ajh.24700.
9. Cravioto-Villanueva A., Luna-Perez P., Gutierrez-de la Barrera M. et al. Thrombocytosis as a predictor of distant recurrence in patients with rectal cancer. Arch Med Res. 2012;43(4):305–11. https://doi.org/10.1016/j.arcmed.2012.06.008.
10. Stone R.L., Nick A.M., McNeish I.A. et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610–8. https://doi.org/10.1056/NEJMoa1110352.
11. Kaser A., Brandacher G., Steurer W. et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis Blood. 2001;98(9):2720–5. https://doi.org/10.1182/blood.v98.9.2720.
12. Besbes S., Shah S., Al-Dybiat I. et al. Thrombopoietin secretion by human ovarian cancer cells. Int J Cell Biol. 2017;2017:1873834. https://doi.org/10.1155/2017/1873834.
13. Riedl J., Hell L., Kaider A. et al. Association of platelet activation markers with cancer-associated venous thromboembolism. Platelets. 2016;27(1):80–5. https://doi.org/10.3109/09537104.2015.1041901.
14. Reddel C.J., Tan C.W., Chen V.M. Thrombin generation and cancer: contributors and consequences. Cancers (Basel). 2019;11(1):100. https://doi.org/10.3390/cancers11010100.
15. Heinmöller E., Weinel R.J., Heidtmann H.H. et al. Studies on tumor-cellinduced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol. 1996;122(12):735–44. https://doi.org/10.1007/BF01209121.
16. Heinmöller E., Schropp T., Kisker O. et al. Tumor cell-induced platelet aggregation in vitro by human pancreatic cancer cell lines. Scand J Gastroenterol. 1995;30(10):1008–16. https://doi.org/10.3109/00365529509096346.
17. Gasic G.J., Gasic T.B., Stewart C.C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968;61(1):46–52. https://doi.org/10.1073/pnas.61.1.46.
18. Lee H.-Y., Yu N.-Y., Lee S.-H. et al. Podoplanin promotes cancerassociated thrombosis and contributes to the unfavorable overall survival in an ectopic xenograft mouse model of oral cancer. Biomed J. 2020;43(2):146–62. https://doi.org/10.1016/j.bj.2019.07.001.
19. Lowe K.L., Navarro-Nunez L., Watson S.P. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res. 2012;129 Suppl 1:S30–7. https://doi.org/10.1016/S0049-3848(12)70013-0.
20. Suzuki-Inoue K. Platelets and cancer-associated thrombosis: focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood. 2019;134(22):1912–8. https://doi.org/10.1182/blood.2019001388.
21. Zara M., Canobbio I., Visconte C. et al. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells. Cell Signal. 2018;48:45–53. https://doi.org10.1016/j.cellsig.2018.04.008.
22. Aghourian M.N., Lemarie C.A., Bertin F.-R., Blostein M.D. Prostaglandin E synthase is upregulated by Gas6 during cancer-induced venous thrombosis. Blood. 2016;127(6):769–77. https://doi.org/10.1182/blood2015-02-628867.
23. Meikle C.K., Meisler A.J., Bird C.M. et al. Platelet-T cell aggregates in lung cancer patients: Implications for thrombosis. PloS One. 2020;15(8):e0236966. https://doi.org/10.1371/journal.pone.0236966.
24. Rudzinski J.K., Govindasamy N.P., Lewis J.D., Jurasz P. The role of the androgen receptor in prostate cancer-induced platelet aggregation and platelet-induced invasion. J Thromb Haemost. 2020;18(11):2976–86. https://doi.org/10.1111/jth.15020.
25. Mitrugno A., Williams D., Kerrigan S.W., Moran N. A novel and essential role for FcγRIIa in cancer cell–induced platelet activation. Blood. 2014;123(2):249–60. https://doi.org/10.1182/blood-2013-03-492447.
26. Hisada Y, Mackman N. Update from the laboratory: mechanistic studies of pathways of cancer-associated venous thrombosis using mouse models. Hematology Am Soc Hematol Educ Program. 2019;2019(1):182–6. https://doi.org/10.1182/hematology.2019000025.
27. Shi C., Yang L., Braun A., Anders H.-J. Extracellular DNA – a danger signal triggering immunothrombosis. Front Immunol. 2020;11:568513. https://doi.org/10.3389/fimmu.2020.568513.
28. Wen F., Shen A., Choi A. et al. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 2013;73(14):4256–66. https://doi.org/10.1158/0008-5472.CAN-12-3287.
29. Eelen G., Treps L., Li X., Carmeliet P. Basic and therapeutic aspects of angiogenesis updated. Circ Res. 2020;127(2):310–29. https://doi.org/10.1161/CIRCRESAHA.120.316851.
30. Goubran H.A., Burnouf T., Radosevic M., El-Ekiaby M. The platelet–cancer loop. Eur J Inter Med. 2013;24(5):393–400. https://doi.org/10.1016/j.ejim.2013.01.017.
31. Zaslavsky A., Baek K.-H., Lynch R.C. et al. Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood. 2010;115(22):4605–13. https://doi.org/10.1182/blood-2009-09-242065.
32. Battinelli E.M., Markens B.A., Italiano J.E. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 2011;118(5):1359–69. https://doi.org/10.1182/blood-2011-02-334524.
33. Salgado R., Junius S., Benoy I. et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer. 2003;103(5):642–6. https://doi.org/10.1002/ijc.10833.
34. Feng W., Madajka M., Kerr B.A. et al. A novel role for platelet secretion in angiogenesis: mediating bone marrow–derived cell mobilization and homing. Blood. 2011;117(14):3892–902. https://doi.org/10.1182/blood2010-08-304808.
35. Kuznetsov H.S., Marsh T., Markens B.A. et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow–derived cells. Cancer Discov. 2012;2(12):1150–65. https://doi.org/10.1158/2159-8290.CD-12-0216.
36. Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22.
37. Wojtukiewicz M.Z., Sierko E., Hempel D. et al. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017;36(2):249–62. https://doi.org/10.1007/s10555-017-9673-1.
38. Borgström P., Discipio R., Maione T. Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma. Anticancer Res. 1998;18(6A):4035–41.
39. Varner J.A., Nakada M.T., Jordan R.E., Coller B.S. Inhibition of angiogenesis and tumor growth by murine 7E3, the parent antibodyof c7E3 Fab (abciximab; ReoProTM). Angiogenesis. 1999;3(1):53–60. https://doi.org/10.1023/a:1009019223744.
40. Huang Z., Miao X., Patarroyo M. et al. Tetraspanin CD 151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. J Thromb Haemost. 2016;14(3):606–18. https://doi.org/10.1111/jth.13248.
41. Anene C., Graham A.M., Boyne J., Roberts W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim Biophys Acta Mol Basis Dis. 2018;1864(8):2633–43. https://doi.org/10.1016/j.bbadis.2018.04.013.
42. Bertozzi C.C., Schmaier A.A., Mericko P. et al. Platelets regulate lymphatic vascular development through CLEC-2–SLP-76 signaling. Blood. 2010;116(4):661–70. https://doi.org/10.1182/blood-2010-02-270876.
43. Haining E.J., Lowe K.L., Wichaiyo S. et al. Lymphatic blood filling in CLEC2-deficient mouse models. Platelets. 2021;32(3):352–67. https://doi.org/10.1080/09537104.2020.1734784.
44. Martini C., Thompson E.J., Hyslop S.R. et al. Platelets disrupt vasculogenic mimicry by cancer cells. Scientific Reports. 2020;10(1):1–18. https://doi.org/10.1038/s41598-020-62648-x.
45. Ho-Tin-Noé B., Goerge T., Cifuni S.M. et al. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 2008;68(16):6851–8. https://doi.org/10.1158/0008-5472.CAN-08-0718.
46. Demers M., Ho-Tin-Noé B., Schatzberg D. et al. Increased efficacy of breast cancer chemotherapy in thrombocytopenic mice. Cancer Res. 2011;71(5):1540–9. https://doi.org/10.1158/0008-5472.CAN-10-2038.
47. Volz J., Mammadova-Bach E., Gil-Pulido J. et al. Inhibition of platelet GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in mice. Blood. 2019;133(25):2696–706. https://doi.org/10.1182/blood.2018877043.
48. Camerer E., Qazi A.A., Duong D.N. et al. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood. 2004;104(2):397–401. https://doi.org/10.1182/blood-2004-02-0434.
49. Palumbo J.S., Talmage K.E., Massari J.V. et al. Platelets and fibrin (ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumor cells. Blood. 2005;105(1):178–85. https://doi.org/10.1182/blood-2004-06-2272.
50. Coupland L.A., Chong B.H., Parish C.R. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012;72(18):4662–71. https://doi.org/10.1158/0008-5472.CAN-11-4010.
51. Placke T., Örgel M., Schaller M. et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8. https://doi.org/10.1158/0008-5472.CAN-11-1872.
52. Maurer S., Kropp K.N., Klein G. et al. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Oncoimmunology. 2017;7(2):e1364827. https://doi.org/10.1080/2162402X.2017.1364827.
53. Kopp H.-G., Placke T., Salih H.R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83. https://doi.org/10.1158/0008-5472.
54. Rachidi S., Metelli A., Riesenberg B. et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol. 2017;2(11):eaai7911. https://doi.org/10.1126/sciimmunol.aai7911.
55. Metelli A., Wu B.X., Riesenberg B. et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci Transl Med. 2020;12(525):eaay4860. https://doi.org/10.1126/scitranslmed.aay4860.
56. Huynh L.K., Hipolito C.J., Ten Dijke P. A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules. 2019;9(11):743. https://doi.org/10.3390/biom9110743.
57. Kalos M., June C.H. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49–60. https://doi.org/10.1016/j.immuni.2013.07.002.
58. Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90. https://doi.org/10.1016/j.ccr.2011.09.009.
59. Xiong G., Chen J., Zhang G. et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117(7):3748–58. https://doi.org/10.1073/pnas.1911951117.
60. Zuo X.-X., Yang Y., Zhang Y. et al. Platelets promote breast cancer cell MCF-7 metastasis by direct interaction: surface integrin α2β1-contactingmediated activation of Wnt-β-catenin pathway. Cell Commun Signal. 2019;17(1):1–15. https://doi.org/10.1186/s12964-019-0464-x.
61. Steinbrecher K.A., Horowitz N.A., Blevins E.A. et al. Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res. 2010;70(7):2634–43. https://doi.org/10.1158/0008-5472.CAN-09-3465.
62. Andrade S.S., Gouvea I.E., Silva M.C.C. et al. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer-molecularly distinct behavior of cathepsin K in breast cancer. BMC Cancer. 2016;16:173. https://doi.org/10.1186/s12885-016-2203-7.
63. Tang M., Jiang L., Lin Y. et al. Platelet microparticle-mediated transfer of miR-939 to epithelial ovarian cancer cells promotes epithelial to mesenchymal transition. Oncotarget. 2017;8(57):97464–75. https://doi.org/10.18632/oncotarget.22136.
64. Qi C.-L., Wei B., Ye J. et al. P-selectin-mediated platelet adhesion promotes the metastasis of murine melanoma cells. PloS One. 2014;9(3):e91320. https://doi.org/10.1371/journal.pone.0091320.
65. Zimmerman G.A. Two by two: the pairings of P-selectin and P-selectin glycoprotein ligand 1. Proc Natl Acad Sci U S A. 2001;98(18):10023–4. https://doi.org/10.1073/pnas.191367898.
66. Qi Y., Chen W., Liang X. et al. Novel antibodies against GPIbα inhibit pulmonary metastasis by affecting vWF-GPIbα interaction. J Hematol Oncol. 2018;11(1):117. https://doi.org/10.1186/s13045-018-0659-4.
67. Morimoto K., Satoh-Yamaguchi K., Hamaguchi A. et al. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene. 2008;27(3):264–73. https://doi.org/10.1038/sj.onc.1210645.
68. Peyruchaud O., Saier L., Leblanc R. Autotaxin implication in cancer metastasis and autoimunne disorders: functional implication of binding autotaxin to the cell surface. Cancers (Basel). 2019;12(1):105. https://doi.org/10.3390/cancers12010105.
69. Im J.H., Fu W., Wang H. et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res. 2004;64(23):8613–9. https://doi.org/10.1158/0008-5472.CAN-04-2078.
70. Schumacher D., Strilic B., Sivaraj K.K. et al. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130–7. https://doi.org/10.1016/j.ccr.2013.05.008.
71. Bambace N.M., Levis J.E., Holmes C.E. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets. 2010;21(2):85–93. https://doi.org/10.3109/09537100903470298.
72. Mammadova-Bach E., Gil-Pulido J., Sarukhanyan E. et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell–derived galectin-3. Blood. 2020;135(14):1146–60. https://doi.org/10.1182/blood.2019002649.
73. Chang C.-N., Feng M.-J., Chen Y.-L. et al. p15PAF is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression. PloS One. 2013;8(4):e61196. https://doi.org/10.1371/journal.pone.0061196.
74. Guerrero J.A., Bennett C., van der Weyden L. et al. Gray platelet syndrome: proinflammatory megakaryocytes and α-granule loss cause myelofibrosis and confer metastasis resistance in mice. Blood. 2014;124(24):3624–35. https://doi.org/10.1182/blood-2014-04-566760.
75. Mammadova-Bach E., Zigrino P., Brucker C. et al. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell–derived ADAM9. JCI Insight. 2016;1(14):e88245. https://doi.org/10.1172/jci.insight.88245.
76. Yu L.-X., Yan L., Yang W. et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun. 2014;5:52–6. https://doi.org/10.1038/ncomms6256.
77. Li R., Ren M., Chen N. et al. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer. 2014;14:167. https://doi.org/10.1186/1471-2407-14-167.
78. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30(5):668–81. https://doi.org/10.1016/j.ccell.2016.09.011.
79. Labelle M., Begum S., Hynes R.O. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A. 2014;111(30):E3053–61. https://doi.org/10.1073/pnas.1411082111.
80. Lucotti S., Cerutti C., Soyer M. et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J Clin Invest. 2019;129(5):1845–62. https://doi.org/10.1172/JCI121985.
81. Catena R., Bhattacharya N., El Rayes T. et al. Bone marrow–derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 2013;3(5):578–89. https://doi.org/10.1158/2159-8290.CD-12-0476.
82. Kerr B.A., Harris K.S., Shi L. et al. Platelet TSP-1 controls prostate cancerinduced osteoclast differentiation and bone marrow-derived cell mobilization through TGFβ-1. Am J Clin Exp Urol. 2021;9(1):18–31.
83. De Arcangelis A., Hamade H., Alpy F. et al. Hemidesmosome integrity protects the colon against colitis and colorectal cancer. Gut. 2017;66(10):1748–60. https://doi.org/10.1136/gutjnl-2015-310847.
84. Durrant T.N., van den Bosch M.T., Hers I. Integrin αIIbβ3 outside-in signaling. Blood. 2017;130(14):1607–19. https://doi.org/10.1182/blood2017-03-773614.
85. Boucharaba A., Serre C.-M., Grès S. et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004;114(12):1714–25. https://doi.org/10.1172/JCI22123.
86. Echtler K., Konrad I., Lorenz M. et al. Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PloS One. 2017;12(3):e0172788. https://doi.org/10.1371/journal.pone.0172788.
87. Tímar J., Tovari J., Raso E. et al. Platelet-mimicry of cancer cells: epiphenomenon with clinical significance. Oncology. 2005;69(3):185–201. https://doi.org/10.1159/000088069.
88. Zhu G., Zhang Q., Reddy E.C. et al. The integrin PSI domain has an endogenous thiol isomerase function and is a novel target for antiplatelet therapy. Blood. 2017;129(13):1840–54. https://doi.org/10.1182/blood2016-07-729400.
89. Jain S., Zuka M., Liu J. et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104(21):9024–8. https://doi.org/10.1073/pnas.0700625104.
90. Erpenbeck L., Nieswandt B., Schön M. et al. Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. J Invest Dermatol. 2010;130(2):576–86. https://doi.org/10.1038/jid.2009.278.
91. Malehmir M., Pfister D., Gallage S. et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25(4):641–55. https://doi.org/10.1038/s41591-019-0379-5.
92. Ungerer M., Rosport K., Bültmann A. et al. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collageninduced platelet aggregation without affecting general hemostasis in humans. Circulation. 2011;123(17):1891–9. https://doi.org/10.1161/CIRCULATIONAHA.110.980623.
93. Kato Y., Kaneko M.K. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep. 2014;4(1):1–9. https://doi.org/10.1038/srep05924.
94. Xu M., Wang X., Pan Y. et al. Blocking podoplanin suppresses growth and pulmonary metastasis of human malignant melanoma. BMC Cancer. 2019;19(1):599. https://doi.org/10.1186/s12885-019-5808-9.
95. Sekiguchi T., Takemoto A., Takagi S. et al. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis. Oncotarget. 2016;7(4):3934. https://doi.org/10.18632/oncotarget.6598.
96. Koki A.T., Masferrer J.L. Celecoxib: a specific COX-2 inhibitor with anticancer properties. Cancer Control. 2002;9(2 Suppl):28–35. https://doi.org/10.1177/107327480200902S04.
97. Gasic G.J., Gasic T.B., Galanti N. et al. Platelet–tumor–cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973;11(3):704–18. https://doi.org/10.1002/ijc.2910110322.
98. Kune G.A., Kune S., Watson L.F. Colorectal cancer risk, chronic illnesses, operations and medications: case–control results from the Melbourne Colorectal Cancer Study. 1988. Int J Epidemiol. 2007;36(5):951–7. https://doi.org/10.1093/ije/dym193.
99. Benamouzig R., Deyra J., Martin A. et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology. 2003;125(2):328–36. https://doi.org/10.1016/s0016-5085(03)00887-4.
100. Ishikawa H., Wakabayashi K., Suzuki S. et al. Preventive effects of low-dose aspirin on colorectal adenoma growth in patients with familial adenomatous polyposis: double-blind, randomized clinical trial. Cancer Med. 2013;2(1):50–6. https://doi.org/10.1002/cam4.46.
101. Burn J., Gerdes A.-M., Macrae F. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378(9809):2081–7. https://doi.org/10.1016/S0140-6736(11)61049-0.
102. Frouws M., Bastiaannet E., Langley R. et al. Effect of low-dose aspirin use on survival of patients with gastrointestinal malignancies; an observational study. Br J Cancer. 2017;116(3):405–13. https://doi.org/10.1038/bjc.2016.425.
103. Rothwell P.M., Price J.F., Fowkes F.G.R. et al. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet. 2012;379(9826):1602–12. https://doi.org/10.1016/S0140-6736(11)61720-0.
104. Lecomte M., Laneuville O., Ji C. et al. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem. 1994;269(18):13207–15.
105. Cazenave J.-P., Gachet C. Anti-platelet drugs: do they affect megakaryocytes? Baillieres Clin Haematol. 1997;10(1):163–80. https://doi.org/10.1016/s0950-3536(97)80056-x.
106. Lucotti S., Muschel R.J. Platelets and metastasis: new implications of an old interplay. Front Oncol. 2020;10:1350. https://doi.org/10.3389/fonc.2020.01350.
107. Gachet C. P2 receptors, platelet function and pharmacological implications. Thromb Haemost. 2008;99(3):466–72. https://doi.org/10.1160/TH07-11-0673.
108. Mezouar S., Darbousset R., Dignat-George F. et al. Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo. Int J Cancer. 2015;136(2):462–75. https://doi.org/10.1002/ijc.28997.
109. Gareau A.J., Brien C., Gebremeskel S. et al. Ticagrelor inhibits platelet–tumor cell interactions and metastasis in human and murine breast cancer. Clin Exp Metastasis. 2018;35(1–2):25–35. https://doi.org/10.1007/s10585-018-9874-1.
110. Cho M.S., Noh K., Haemmerle M. et al. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood. 2017;130(10):1235–42. https://doi.org/10.1182/blood-2017-02-769893.
111. Geranpayehvaghei M., Shi Q., Zhao B. et al. Targeting delivery of platelets inhibitor to prevent tumor metastasis. Bioconjug Chem. 2019;30(9):2349–57. https://doi.org/10.1021/acs.bioconjchem.9b00457.
112. Elaskalani O., Falasca M., Moran N. et al. The role of platelet-derived ADP and ATP in promoting pancreatic cancer cell survival and gemcitabine resistance. Cancers (Basel). 2017;9(10):142. https://doi.org/10.3390/cancers9100142.
113. Denslow A., Switalska M., Jarosz J. et al. Clopidogrel in a combined therapy with anticancer drugs—effect on tumor growth, metastasis, and treatment toxicity: studies in animal models. PLoS One. 2017;12(12):e0188740. https://doi.org/10.1371/journal.pone.0188740.
114. Su X., Floyd D.H., Hughes A. et al. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest. 2012;122(10):3579–92. https://doi.org/10.1172/JCI38576.
115. Cheng J.W. Impact of selective platelet inhibition in reducing cardiovascular risk–role of vorapaxar. Vasc Health Risk Manag. 2016;12:263–8. https://doi.org/10.2147/VHRM.S81342.
116. Aisiku O., Peters C.G., De Ceunynck K. et al. Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood. 2015;125(12):1976–85. https://doi.org/10.1182/blood-2014-09-599910.
117. Ma S.-N., Mao Z.-X., Wu Y. et al. The anti-cancer properties of heparin and its derivatives: a review and prospect. Cell Adhesion & Migration. 2020;14(1):118–28. https://doi.org/10.1080/19336918.2020.
118. Azab A.K., Quang P., Azab F. et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood. 2012;119(6):1468–78. https://doi.org/10.1182/blood-2011-07-368050.
119. Gardner R. Crizanlizumab in vaso-occlusive crisis caused by sickle cell disease. Drugs Today (Barc). 2020;56(11):705–14. https://doi.org/10.1358/dot.2020.56.11.3178111.
120. Peterson J.E., Zurakowski D., Italiano J.E. et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73. https://doi.org/10.1007/s10456-012-9259-z.
121. Best M., Sol N., Kooi I. et al. RNA-seq of tumor-educated platelets enables article RNA-seq of tumor-educated platelets enables. Cancer Cell. 2015;28(5):666–76. https://doi.org/10.1016/j.ccell.2015.09.018.
122. Best M.G., Wesseling P., Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78(13):3407–12. https://doi.org/10.1158/0008-5472.CAN-18-0887.
123. Dai H., Zhou H., Sun Y. et al. D-dimer as a potential clinical marker for predicting metastasis and progression in cancer. Biomed Rep. 2018;9(5):453–7. https://doi.org/10.3892/br.2018.1151.
124. Geddings J.E., Mackman N. Tumor-derived tissue factor–positive microparticles and venous thrombosis in cancer patients. Blood. 2013;122(11):1873–80. https://doi.org/10.1182/blood-2013-04-460139.
125. Ibele G.M., Kay N.E., Johnson G.J., Jacob H.S. Human platelets exert cytotoxic effects on tumor cells. Blood. 1985;65(5):1252–5.
126. Sagawa T., Tominaga A., Kodama T., Okada M. Cytotoxicity of unstimulated and thrombin-activated platelets to human tumour cells. Immunology. 1993;78(4):650–6.
127. Ahmad R., Menezes J., Knafo L., Ahmad A. Activated human platelets express Fas-L and induce apoptosis in Fas-positive tumor cells. J Leukoc Biol. 2001;69(1):123–8.
128. Haemmerle M., Taylor M.L., Gutschner T. et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun. 2017;8(1):310. https://doi.org/10.1038/s41467-017-00411-z.
129. Carr B.I., Cavallini A., D’Alessandro R. et al. Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro. BMC Cancer. 2014;14:43. https://doi.org/10.1186/1471-2407-14-43.
130. Cho M.S., Bottsford-Miller J., Vasquez H.G. et al. Platelets increase the proliferation of ovarian cancer cells. Blood. 2012;120(24):4869–72. https://doi.org/10.1182/blood-2012-06-438598.
131. Hu Q., Sun W., Qian C. et al. Anticancer platelet-mimicking nanovehicles. Adv Mater. 2015;27(44):7043–50. https://doi.org/10.1002/adma.201503323.
132. Papa A.-L., Jiang A., Korin N. et al. Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. Sci Transl Med. 2019;11(479):eaau5898. https://doi.org/10.1126/scitranslmed.aau5898.
133. Xu P., Zuo H., Zhou R. et al. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Oncotarget. 2017;8(35):58322–37. https://doi.org/10.18632/oncotarget.16871.
134. Haemmerle M., Bottsford-Miller J., Pradeep S. et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126(5):1885–96. https://doi.org/10.1172/JCI85086.
135. Elaskalani O., Berndt M.C., Falasca M., Metharom P. Targeting platelets for the treatment of cancer. Cancers (Basel). 2017;9(7):94. https://doi.org/10.3390/cancers9070094.
Рецензия
Для цитирования:
Слуханчук Е.В., Бицадзе В.О., Хизроева Д.Х., Третьякова М.В., Солопова А.Г., Галкин В.Н., Шкода А.С., Цибизова В.И., Линников В.И., Элалами И., Гри Ж., Бреннер Б., Макацария А.Д. Тромбоциты, тромбовоспаление и онкологический процесс. Акушерство, Гинекология и Репродукция. 2021;15(6):755-776. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.274
For citation:
Slukhanchuk E.V., Bitsadze V.O., Khizroeva J.Kh., Tretyakova M.V., Solopova A.G., Galkin V.N., Shkoda A.S., Tsibizova V.I., Linnikov V.I., Elalamy I., Gris J., Brenner B., Makatsariya A.D. Platelets, thrombo-inflammation and cancer. Obstetrics, Gynecology and Reproduction. 2021;15(6):755-776. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.274

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.