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Summary

Microvesicles (MVs), including microparticles and exosomes, are secreted from a variety of cells. They are present in the
blood circulation under normal physiological conditions, and their levels increase in a wide range of disease states. MVs
contain proteins, growth and apoptotic factors, DNA fragments, microRNAs as well as messenger RNAs (mRNAS);
therefore, they may function as regulators in cell-cell communication and mediators of cell signaling during multiple
biological processes. The current review focuses on the role of MVs in healthy pregnancy and gestational vascular
complications and discusses the involvement of MVs in thrombosis, hemostasis and cell function that overall reflect the
placental-maternal crosstalk.
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Pesrome

Muxkposesukynbl (MB), BK04as MUKPOYacTuLbl U 3K30COMbI, CEKPETUPYIOTCA U3 MHOXECTBA KieTOK. OHU NpucyTCT-
BYIOT B KDOBOTOKE NP1 HOPMaribHbIX (OU3N0TOMNYECKNX YCITOBUSIX U UX YDOBHM YBEINYNBAOTCS MPU MHOrUX 3a60/16Ba-
Husx. MB copepxar 66e5ikun, hakTopbl pocta u anontonudeckue aktopsl, parmedtsl [JHK, mukpoPHK, a takxe
nHghopmaumoHHbie PHK; crefoBatesibHo OHN MOTYT PErynnpoBatb MEXKIETOYHbIE KOMMYHUKALMY W SABAATHCA NOCPEA-
HUKamu 4015 Iepeaayy cUrHanoB KieTok B TeHEHNE PasHo00pa3HbIX OUOIOrMYeCcKUX MpoLeccoB. [aHHbi 0030p CGOKY-
cUpoBaH Ha posin MB A5 340p0BOVi 68PEMEHHOCTY 1 [PY FECTALNOHHbIX COCYANCTbIX OCTTOXHEHUSX, B HEM 00CYXAAETCA
y4actne MB B Tpom603ax, remocTase u oyHKUNOHUPOBAHNN KNIETOK, KOTOPOE 110 CyTH CBOEV OTPAXAET B3aUMHOE BiiNS-

HWe 1nnalyeHTbl n opraHn3ma marepum.

Kntoyesbie cnosa

CTble 0C/IOXHEHUA, MukpOPHK.

KoHdhnukT untepecos

HUK JAHHOW Ny6nmKauuu.

Ing yutupoBaHmus

n penpoaykuus. 2016; 1: 5-10.

MuKDOBE3NKYIIbI, 3K30COMbI, MUKPOYACTULIbI, FEMOCTA3, TDOMBO3, M1aLEHTa, 6EPEMEHHOCTb, reCTaLNOHHBIE COCYAN-

Cratbs noctynuna: 18.01.2016 r.; B popabotaHHom supe: 08.02.2016 r.; npuHaTa k nevatu: 12.02.2016 r.

ABTOpbI 3aABNIAKOT 00 OTCYTCTBUM HEOOXOANMOCTN PACKPbITUA (DUHAHCOBOW MOALEPXKKM NN KOH(DNMKTA UHTEPECOB B OTHOLLE-

Bce aBTOpbI cenanit aKBUBaNEHTHbIA BKNaz B NOArOTOBKY Ny6NMKaLMN.

AapoH A., bpentep b. MukpoBe3ukysbl 1 TPOM6G03 NPY OCMIOXHEHUAX B aKYLLEPCTBE U TMHEKONOrUKn. AKYLLIEPCTBO, MMHEKOI0rna

Extracellular vesicles

Extracellular membrane vesicles (EVs) are secreted
from different types of cells, including blood cells, endo-
thelial, trophoblast, cardiac and tumor cells [1,2]. EVs are
present in the blood circulation and other biological fluids
under normal physiologic conditions, and their levels
increase in a wide range of disease states. EVs contain
proteins, growth and apoptotic factors, DNA fragments,
microRNAs as well as messenger RNAs (mRNAs); there-
fore, they may function as regulators in cell-cell commu-
nication and mediators of paracrine signaling during
multiple biological processes [1,2]. Depending on their
size, mechanism of release and protein compositions, EVs
can be divided into three subpopulations:

1) exosomes,

2) microparticles (MPs)

3) apoptotic bodies [3,4].

1) Exosomes have a size of 30-100 nm in diameter and
derive from endosomal compartments [5]. 2) Microparti-
cles (MPs) are larger (100nm-1pm) and are released from
the cell surface plasma membrane via a process called
vesiculation [6]. MPs are shed from cell membrane upon
activation or apoptosis and can induce cell signaling that
may lead to a variety of processes including invasion,
migration, proliferation, angiogenesis or apoptosis [7,8].
Thus, MPs are involved in thrombosis, inflammation and

vascular dysfunction [2]. MPs contain characteristic
proteins which are enriched in lipid rafts and are exposed
on their surface [9]. Like exosomes, MPs contain typical
marker proteins similar to the secreting cells. In addition,
emerging evidence suggests that MPs are not simply a
consequence of a disease, but rather a factor contributing
to its pathological processes. Thus, MPs serve as both as
markers and mediators of vascular complications [10] and
may play a significant role in the maternal placental cross-
talk [11]. 3). Apoptotic bodies are released from blebs of
apoptotic cells and have a size of 1-5pm in diameter [12].
The review is focused on MPs and exosomes which are
termed collectively microvesicles (MVs). Upon release,
MVs can interact with target cells via a receptor-mediated
mechanism [13,14] or they can directly fuse with the
plasma membrane of target cells and release their content
into the recipient cell [4]. Alternatively, MVs can be inter-
nalized via endocytosis [15]. After internalization, MVs
can fuse with endosomes to release the content into the
cytosol of target cells; they can be transferred to lyso-
somes and are degraded.

Microvesicles and thrombosis

Tissue factor (TF), the main activator of the coagulation
cascade, is expressed on non-vascular cells, activated
cells within the vessel wall (such as leukocytes and endo-
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thelial cells) and circulating MVs [16]. TF-bearing MVs
arise from raft-rich regions of the plasma membrane
enriched with TF, P-selectin glycoprotein ligand-1 and
phosphatidylserine [17] and play a central role in the
initiation of the coagulation cascade. These MVs have
been shown to accumulate during cell injury-induced clot
formation and promote thrombotic events [18,19]. In
addition, TF-bearing MVs participate in platelet thrombus
formation by binding to P-selectin on the platelet surface
[9]. Despite circulation of TF-bearing MVs in healthy
people, TF activity remains undetectable and it activates
upon recruitment to a site of vascular injury. However, in
pathological states, MVs bearing active TF confer a predis-
position to thromboembolic events [20]. The procoagulant
properties of the MVs may also be attributed to the hemo-
static balance between pro- and anti-coagulant mecha-
nisms. It was found that the MV hemostatic ratio between
TF and its inhibitor TF pathway inhibitor (TFPI) was <1 in
healthy controls but significantly increased in patients
with cardiovascular complications (CAD), diabetic CAD
(DCAD) and patients with diabetic foot [21], patients with
solid tumors [22] as well as hematologic malignancy [23].
Additionally, part of MVs express high levels of negatively
charged phospholipids such as phosphatidylserine, which
provides a catalytic site for coagulation complexes (TF/
Vlla, prothrombinase and tenase), thereby indirectly
enhancing coagulation activation [24].

High levels of circulating MVs specifically annexin
V-bearing MV, endothelial and platelet MVs have been
associated with an increased risk of VTE in patients with
factor V Leiden and prothrombin G20210A mutation [25],
and in carriers of natural anticoagulant deficiencies (anti-
thrombin, protein C and protein S defect) [26], suggesting
a possible contribution of MVs to the hypercoagulability of
genetic thrombophilia. Additionally, an increase in platelet
and endothelial MVs was also found in patients with
antiphospholipid syndrome (APS) and antiphospholipid
antibodies (aPL), a syndrome which is associated with
thrombosis and recurrent pregnancy loss [27].

Microvesicle cell origin
and thrombogenicity in healthy
pregnancy and gestational vascular
complications

Studies measuring the numbers of circulating MVs and
their cell origin in normal and complicated pregnancy are
inconsistent and demonstrate high variation in their
results mainly because of the lack of standardization and
sensitive tools for MV analysis [28]. The levels of total,
platelet-, endothelial-, leukocyte-derived and tissue factor-
bearing MVs, in normal healthy pregnancy are found to be
higher in the 1st trimester as compared to the non-preg-
nant state and gradually increase during pregnancy, with
the highest values reached in the 3rd trimester [29].
Compared to normal pregnancies, in women with gesta-
tional vascular complications (GVC) such as hypertension
and pre-eclampsia further increases were found in the
levels of endothelial MVs that may indicate a vascular

injury [30-34] and in the levels of monocyte and leukocyte
MVs that may indicate inflammatory response [31,35-37].
Moreover, in non-pregnant women with a history of recur-
rent pregnancy loss, a significant increase in total annexin
V, TF and endothelial MVs was demonstrated compared to
parous controls [38-40]. MVs obtained from healthy preg-
nant women displayed a higher procoagulant activity
compared to those of non-pregnant females [29,41] and
an increase in the MV TF/TFPI ratio. The MV procoagulant
activity as well as the TF/TFPI ratio appeared to be further
elevated in MVs of women with GVC [30,41,42]. The pres-
ence of increased levels of endothelial, TF and phosphati-
dylserine expressing MVs at a gap of at least 3 months
after the pregnancy loss suggests a continued chronic
endothelial damage/activation [38].

Circulating MVs of pregnant women include MVs of
placental syncytiotrophoblast origin that can be detected
in maternal circulation from second trimester and their
number increases during the third trimester [43].
Exosomes released by trophoblasts carry molecules
involved in placental physiology and play a key role in cell-
cell communication within the placental micro-environ-
ment and in maternal-fetal cross-talk [44]. We found that
levels of placental trophoblast MVs were similar in all
pregnancy groups [31]. However, other publications
reported excess shedding of syncytiotrophoblast MVs in
early-onset pre-eclampsia, but not in woman with normo-
tensive intrauterine growth restriction [43,45]. Higher
amounts of circulating syncytiotrophoblast MVs in mater-
nal blood might lead to endothelial dysfunction, mono-
cyte stimulation and an excessive maternal inflammatory
reaction [46,47]. Syncytiotrophoblast MVs bearing TF,
and other coagulation factors may reflect the delicate
hemostatic balance between maternal and placental cells
[42,48]. Whereas the relative contribution of syncytiotro-
phoblast MVs bearing TF was substantial in healthy preg-
nant women, syncytiotrophoblast MVs are one of the
most increased MVs during pre-eclampsia (PE) and may
play an important role in the pathogenesis of this
syndrome [49].

A significant increase in the maternal source of
TF-bearing MVs in pregnant women with GVG potentially
reflects the systemic nature of such pathologies [42].
Syncytiotrophoblast MVs were found to trigger thrombin
generation in normal plasma in a TF-dependent manner,
which was more pronounced in syncytiotrophoblast MVs
shed from pre-eclamptic placenta, indicating that TF activ-
ity is expressed by these MVs [41]. The MV content and
their effects on endothelial and trophoblast cell function
vary according to the physiological/pathological state of a
pregnant woman. There is sustained evidence that MVs of
women with GVC reflect the pathophysiological state of
the patients.

Microvesicles, pregnancy
and inflammation

Pre-eclampsia altered the production of immuno-
regulatory cytokines and angiogenic factors, which
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resulted in poor trophoblastic invasion at the first stage of
the disease, and affected systemic maternal inflammatory
response at the second stage, that included release of
necrotic and/or apoptotic syncytiotrophoblast bodies into
the maternal circulation that induced maternal vascular
endothelial injury [50,51].

We found that MVs obtained from women with GVC
demonstrated higher levels of inflammatory and angio-
genic proteins compared with those of healthy pregnant
women [52]. Placental MVs can modulate basal peripheral
immune cell activation and responsiveness to lipopoly-
saccharide (LPS) during normal pregnancy; in pre-
eclampsia, this effect is exacerbated. Placental syncytio-
trophoblast MVs generated in-vitro from normal placentas,
stimulate peripheral blood monocytes, which may indicate
contribution of syncytiotrophoblast MVs to the systemic
maternal inflammation. Syncytiotrophoblast MVs derived
from pre-eclamptic placentas were found to up-regulate
the cell surface expression of intercellular adhesion mole-
cule 1 (ICAM-1, CD54) of peripheral blood monocytes,
and stimulate the secretion of pro-inflammatory interleu-
kin (IL)-6 and IL-8 from these cells [46]. Inflammatory
priming of peripheral blood mononuclear cells (PBMCs)
during pregnancy is established by the first trimester and
is associated with early inhibition of IFN-y production. The
inflammatory response is enhanced in pre-eclampsia with
loss of the IFN-y suppression [53]. Circulating syncytio-
trophoblast membrane MVs (STBMs) bind to monocytes
and stimulate the production of inflammatory cytokines
[53]. MVs drawn from pre-eclamptic women induce
vascular hyporeactivity in vessels of pregnant mice
through an overproduction of nitric oxide (NO) [54]. MVs
derived from hypoxic trophoblasts induce a more intense
and rapid inflammatory response of PBMCs than MVs
from normal trophoblasts. This difference might explain
the exaggerated systemic inflammatory response as a
result of placental hypoxia in pre-eclampsia [55]. Apopto-
sis is crucial in mediating immune privilege of the fetus
during pregnancy. Exosomes secreted by human placenta
carry functional Fas ligand, trail molecules and convey
apoptosis in activated immune cells, suggesting exosome-
mediated immune privilege of the fetus.

MVs of healthy pregnant women were found to reduce
apoptosis, increase migration, and induce tube formation
of endothelial cells. These processes were suppressed by
MVs of women with GVC. In early-stage trophoblasts, MVs
of healthy pregnant women decreased apoptosis
compared with untreated cells and induced higher migra-
tion. This effect was mediated through extracellular
signal-regulated kinase pathway. Conversely, MVs of
women with GVC increased term trophoblast apoptosis
compared to cells exposed to MVs of healthy pregnant
women and inhibited early-stage trophoblasts migration.
Trophoblast debris obtained from culturing placental
explants of normal placentas shows markers of apoptosis
and is phagocytosed by macrophages or endothelial cells,
producing a tolerant phenotype in the phagocyte. When

normal placental explants are cultured with antiphospho-
lipid antibodies (a maternal risk factor for pre-eclampsia),
or IL-6 (which increases in the serum of pre-eclamptic
women), the death process in the syncytiotrophoblasts
results in more necrotic debris which in turn leads to acti-
vation of endothelial cells.

Microvesicles and microRNAs

Non-coding microRNAs (miRNAs) have a size of ~22
nucleotides in length and normally function as negative
intracellular regulators of target mRNA expression at the
post-transcriptional level via binding to the 3'UTR of
target mRNAs through base pairing, which results in
target mRNAs cleavage or translation inhibition [56].
miRNAs play critical roles in many key biological
processes: cell growth, tissue differentiation, cell prolif-
eration, embryonic development and apoptosis. Each
miRNA can control hundreds of gene targets [57-60]. As
such, the mutation of miRNAs, the dysfunction of miRNA
biogenesis and the dysregulation of miRNAs and their
targets may result in various diseases [57,58,61,62]. The
detection of extracellular miRNAs in serum or breast
milk suggests that miRNAs have a biological function
and can be mediators for cell signaling in target cells and
biomarkers for disease [61,63]. In blood circulation,
miRNAs are protected from RNase degradations due to
the inclusion into MVs, which serve as carriers for regu-
latory RNAs [1,64]. Several studies have shown that
circulating MVs serve as transport vehicles for large
numbers of specific miRNAs and have been associated
with vascular diseases [63-66]. miRNA profiles of MVs
can significantly differ from their maternal cells, indicat-
ing an active mechanism of selective 'packaging' from
cells into MVs [1,65,67]. This suggests a unique mecha-
nism of transferring gene-regulatory function from
releasing cells to target cells via MVs circulating in blood
[59,66]. Human villous trophoblasts express and secrete
placenta-specific miRNAs into maternal circulation via
exosomes [30,67]. However, the research of MV miRNA
involvement in pregnancy is in its first steps and focuses
on screening for miRNAs that are unique for pregnancy.
One of these studies described specific miRNA profiles
in the placenta and maternal plasma. It has been found
that numerous miRNAs, which are exclusively expressed
during pregnancy, are clustered in chromosomal regions.
The three major clusters are: the chromosome 19 miRNA
cluster (C19MC), miR-371-3 cluster, which is also local-
ized on chromosome 19, and the C14MC cluster. miRNA
members of these clusters are detected in the placenta
and the serum [58,59]. A specific miRNA was found to
be correlated with the growth of the placenta and preg-
nancy age and part of this miRNA is also expressed in a
variety of tumors [59].

In summary, MVs seem to play a pivotal role in the
course of pregnancy, which could potentially result in
gestational vascular complications and may serve as a
biomarker for early diagnosis of such pathologies.
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